精英家教网 > 高中数学 > 题目详情
15.某学校为了更好的培养尖子生,使其全面发展,决定由3名教师对5个尖子生进行“包教”,要求每名教师的“包教”学生不超过2人,则不同的“包教”方案有(  )
A.60B.90C.150D.120

分析 先分组5个尖子生分为(2,2,1),再分配即可.

解答 解:5个尖子生分为(2,2,1),故其分组的方法有$\frac{{C}_{5}^{2}{C}_{3}^{2}{C}_{1}^{1}}{{A}_{2}^{2}}$=15种,
再分配给3名教师,共有15A33=90种,
故选:B.

点评 本题主要考查分组分配问题,关键是掌握分组的方法,属基本题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.(理科)已知函数f(x)=-6ln(ax+2)+$\frac{1}{2}$x2在x=2处有极值.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线y=kx与函数f′(x)有交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1(-1,0),F2(1,0),已知(1,e)在椭圆上,其中e为椭圆的离心率.
(I) 求椭圆的方程;
(Ⅱ)设A,B是椭圆上位于x轴上方的两点,直线AF2与直线BF1交于点P,|PA|:|PF2|=|PF1|:|PB|=3:1,求直线AF1的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sinθ+cosθ=$\frac{1}{5}$,且$\frac{π}{2}$<θ<$\frac{3π}{4}$,则cos2θ的值是-$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,满足|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•$\overrightarrow{b}$=0,($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow{b}$)=0
(Ⅰ)求|$\overrightarrow{a}$-2$\overrightarrow{b}$|的值;
(Ⅱ)求|$\overrightarrow{c}$|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且点(1,$\frac{\sqrt{3}}{2}$)在该椭圆上.
(1)求椭圆的方程;
(2)不垂直坐标轴的直线l与椭圆C交于A,B两点,以AB为直径的圆过原点,且线段AB的垂直平分线交y轴于点P(0,-$\frac{3}{2}$),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),设P为椭圆上一点,且∠F1PF2=60°,${S_{△P{F_1}{F_2}}}$=$\frac{{\sqrt{3}}}{3}$.
(Ⅰ)求b;
(Ⅱ)若a=2,A(0,b),是否存在以A为直角顶点的内接于椭圆的等腰直角三角形?若存在,请求出共有几个?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.书架上有3本科技书和5本文艺书,要求科技书不能放在一起,一共有14400种不同的方法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知(1-2x)5(1+ax)4的展开式中x的系数为2,则实数a的值为3.

查看答案和解析>>

同步练习册答案