精英家教网 > 高中数学 > 题目详情
5.把函数f(x)=cos(ωx+$\frac{π}{6}$)(ω>0)的图象向右平移$\frac{2π}{3}$个单位长度后与原图象重合,则当ω取最小值时,f(x)的单调递减区间是(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)B.[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$](k∈Z)
C.[$\frac{2kπ}{3}$-$\frac{π}{18}$,$\frac{2kπ}{3}$+$\frac{5π}{18}$](k∈Z)D.[$\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}$-$\frac{π}{18}$](k∈Z)

分析 利用函数y=Asin(ωx+φ)的图象变换规律可得k•$\frac{2π}{ω}$=$\frac{2π}{3}$,k∈Z,求得ω的值,可得函数的解析式,再利用余弦函数的单调性得出结论.

解答 解:把函数f(x)=cos(ωx+$\frac{π}{6}$)(ω>0)的图象向右平移$\frac{2π}{3}$个单位长度后得到的图象与原图象重合,
故k•$\frac{2π}{ω}$=$\frac{2π}{3}$,k∈Z,即ω=3k,故ω的最小正值为3,此时,f(x)=cos(3x+$\frac{π}{6}$).
令2kπ≤3x+$\frac{π}{6}$≤2kπ+π,求得$\frac{2kπ}{3}$-$\frac{π}{18}$≤x≤$\frac{2kπ}{3}$+$\frac{5π}{18}$,故f(x)的单调递减区间为[$\frac{2kπ}{3}$-$\frac{π}{18}$,$\frac{2kπ}{3}$+$\frac{5π}{18}$],
故选:C.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以该椭圆上的点和椭圆的两个焦点为顶点的三角形的周长为6.
(1)求椭圆C的方程;
(2)设过点C的左焦点F的直线l交C于A,B两点,是否存在常数λ,使|$\overrightarrow{AB}$|=λ$\overrightarrow{FA}$•$\overrightarrow{FB}$恒成立,若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若实数x,y,z满足y+z=3x2-4x+6,y-z=x2-4x+4,试确定x,y,z的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=($\frac{1}{2}$)x,则f(log2$\frac{1}{3}$)=-$\frac{1}{3}$,函数f(x)的值域为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且点(1,$\frac{\sqrt{3}}{2}$)在该椭圆上.
(1)求椭圆的方程;
(2)不垂直坐标轴的直线l与椭圆C交于A,B两点,以AB为直径的圆过原点,且线段AB的垂直平分线交y轴于点P(0,-$\frac{3}{2}$),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,若Γ与圆E:(x-$\frac{3}{2}$)2+y2=1相交于M,N两点,且圆E在Γ内的弧长为$\frac{2}{3}$π.
(I)求a,b的值;
(II)过Γ的中心作两条直线AC,BD交Γ于A,C和B,D四点,设直线AC的斜率为k1,BD的斜率为k2,且k1k2=$\frac{1}{4}$.
(1)求直线AB的斜率;
(2)求四边形ABCD面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知动点P到y轴的距离的3倍等于它到点A(1,3)的距离的平方,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.${∫}_{0}^{3}$|x-2|dx=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知抛物线C:x2=4y,直线l1与C相交于A,B两点,线段AB与它的中垂线l2交于点G(a,1)(a≠0).
(Ⅰ)求证:直线l2过定点,并求出该定点坐标;
(Ⅱ)设l2分别交x轴,y轴于点M,N,是否存在实数a,使得A,M,B,N四点在同一个圆上,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案