精英家教网 > 高中数学 > 题目详情

在△ABC中,若
(Ⅰ)判断△ABC的形状;
(Ⅱ)在上述△ABC中,若角C的对边,求该三角形内切圆半径的取值范围。

(Ⅰ)直角三角形;(Ⅱ)

解析试题分析:(Ⅰ)先利用正弦定理和余弦定理把条件中关于角的等式转化为关于边的等式,再整理化简,通过最终的等式可以判断三角形的形状.
(Ⅱ)利用(Ⅰ)的结果和切线的性质把内切圆的半径用三角形的三条边表示出来,再把三角边转化为角的形式,从而把问题转化求三角函数的值域问题.
试题分析:(Ⅰ)根据正弦定理,原式可化为:
再由余弦定理,上式可化为: ,
 
消去整理得:,所以 即△ABC为直角三角形.
(Ⅱ)如图,中,的内切圆分别与边相切与点

由切线长定理知: 
 
 四边形中, 
四边形为正方形, 
的半径 
若设内切圆半径为,则 .


 
 
考点:1.正弦定理和余弦定理的应用;2.直角三角形内切圆的性质;3.三角恒等变换;4.三角函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知中,内角的对边的边长为,且
(1)求角的大小;
(2)若,求出的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,(,且为常数),设函数,若的最大值为1.
(1)求的值,并求的单调递增区间;
(2)在中,角的对边,若,且,试判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,内角的对边分别为,并且.
(1)求角的大小;
(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的对边,
(1)求
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的最小值和最大值
(2)设三角形角的对边分别为,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别是,已知.
(Ⅰ)求
(Ⅱ)若,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的内角的对边分别为,且满足
(1)求角的大小;
(2)若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案