精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)x2bx3.

(1)f(0)f(4),求函数f(x)的零点;

(2)若函数f(x)一个零点大于1,另一个零点小于1,求b的取值范围.

【答案】(1)1和3 (2) b的取值范围为(4,+∞)

【解析】试题分析:(1)由得出,再将代入函数解方程即可;(2根据二次函数的图象,只需即可.

试题解析(1)f(0)f(4),得3164b3,即b4,所以f(x)x24x3,令f(x)0

x24x30,得x13x21

所以f(x)的零点是13.

(2)因为f(x)的零点一个大于1,另一个小于1,如图.

f(1)<0,即1b3<0,所以b>4.

b的取值范围为(4,+∞)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:

(1)计算该炮兵连这8周中总的命中频率,并确定第几周的命中频率最高;

(2)以(1)中的作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射3次,记命中的次数为,求的数学期望;

(3)以(1)中的作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过?(取

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民用水原价为2.25元/立方米,从2010年1月1日起实行阶梯式计价:

级数

计算水费的用水量/立方米

单价/(元/立方米)

1

不超过20立方米

1.8

2

超过20立方米30立方米

2.4

3

超过30立方米

p

其中p是用水总量的一次函数,已知用水总量为40立方米时p=3.0元/立方米,用水总量为50立方米时p=3.5元/立方米.

(1)写出水价调整后居民每月水费额与用水量的函数关系式.每月用水量在什么范围内,水价调整后居民同等用水的水费比调整前增加?

(2)用一个流程图描述水价调整后计算水费的主要步骤.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数的值的程序框图如图所示.

(1)指出程序框图中的错误,并写出算法;

(2)重新绘制解决该问题的程序框图,并回答下面提出的问题.

要使输出的值为正数,输入的x的值应满足什么条件?

要使输出的值为8,输入的x值应是多少?

要使输出的y值最小,输入的x值应是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

(1)若,证明: 时, 成立;

(2)讨论函数的单调性;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为创建全国文明城市,某区向各事业行政单位征集“文明过马路”义务督导员.从符合条件的600名志愿者中随机抽取100名,按年龄作分组如下:[20,25) , [25,30) , [30,35), [35,40) , [40,45] ,并得到如下频率分布直方图.

(Ⅰ)求图中 的值,并根据频率分布直方图统计这600名志愿者中年龄在[30.40)的人数;

(Ⅱ)在抽取的100名志愿者中按年龄分层抽取10名参加区电视台“文明伴你行”节目录制,再从这10名志愿者中随机选取3名到现场分享劝导制止行人闯红灯的经历,记这3名志愿者中年龄不低于35岁的人数为 ,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过下列两点的直线的斜率是否存在?如果存在,求其斜率,并确定直线的倾斜角α.

(1)A(2,3),B(4,5);

(2)C(-2,3),D(2,-1);

(3)P(-3,1),Q(-3,10).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图象过点

(1)求的值并求函数的值域;

(2)若关于的方程有实根,求实数的取值范围;

(3)若函数 ,则是否存在实数,使得函数的最大值为0?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与函数的图像相切于点

(1)求实数的值;

(2)证明除切点外,直线总在函数的图像的上方;

(3)设是两两不相等的正实数,且成等比数列,试判断的大小关系,并证明你的结论.

查看答案和解析>>

同步练习册答案