精英家教网 > 高中数学 > 题目详情

【题目】经过下列两点的直线的斜率是否存在?如果存在,求其斜率,并确定直线的倾斜角α.

(1)A(2,3),B(4,5);

(2)C(-2,3),D(2,-1);

(3)P(-3,1),Q(-3,10).

【答案】(1)存在, ;(2)存在;(3)不存在,

【解析】试题分析:(1)根据直线上两点坐标求斜率,可得结合可得结果;(2) 根据直线上两点坐标求斜率,可得结合可得结果;3根据直线上两点横坐标相等可知直线的斜率不存在,倾斜角.

试题解析:(1)存在.直线AB的斜率kAB=1,即tanα=1,又0°≤α<180°,所以倾斜角α=45°.

(2) 存在.直线CD的斜率kCD=-1,即tanα=-1,又0°≤α<180°,所以倾斜角α=135°.

(3)不存在.因为xPxQ=-3,所以直线PQ的斜率不存在,倾斜角α=90°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b与c的夹角;

(2)设O为△ABC的外心,已知AB=3,AC=4,非零实数x,y满足=x+y,且x+2y=1,求cos ∠BAC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班为了提高学生学习英语的兴趣,在班内举行英语写、说、唱综合能力比赛,比赛分为预赛和决赛2个阶段,预赛为笔试,决赛为说英语、唱英语歌曲,将所有参加笔试的同学(成绩得分为整数,满分100分)进行统计,得到频率分布直方图,其中后三个矩形高度之比依次为4:2:1,落在的人数为12人.

(Ⅰ)求此班级人数;

(Ⅱ)按规定预赛成绩不低于90分的选手参加决赛,已知甲乙两位选手已经取得决赛资格,参加决赛的选手按抽签方式决定出场顺序.

(i)甲不排在第一位乙不排在最后一位的概率;

(ii)记甲乙二人排在前三位的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x2bx3.

(1)f(0)f(4),求函数f(x)的零点;

(2)若函数f(x)一个零点大于1,另一个零点小于1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点C为圆心的圆经过点A(1,0)B(3,4),且圆心在直线x3y150上.设点P在圆C上,求PAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(0,1),(3+2,0),(3-2,0)在圆C.

(1)求圆C的方程.

(2)若圆C与直线x-y+a=0交于A,B两点,OA⊥OB,a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论的单调区间;

(2)设,当有两个极值点为,且时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的实轴端点分别为,记双曲线的其中一个焦点为,一个虚轴端点为,若在线段上(不含端点)有且仅有两个不同的点,使得,则双曲线的离心率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数是实数,是虚数单位.

(1)求复数

(2)若复数所表示的点在第一象限,求实数m的取值范围.

查看答案和解析>>

同步练习册答案