精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)满足f(x)•f(x+2)=1,且f(1)=2,则f(99)=(  )
A.$\frac{1}{2}$B.1C.2D.99

分析 利用已知条件求出抽象函数的周期,然后求解函数值即可.

解答 解:函数f(x)满足f(x)•f(x+2)=1,
可得:f(x+2)=$\frac{1}{f(x)}$,
∴f(x+4)=$\frac{1}{f(x+2)}$=$\frac{1}{\frac{1}{f(x)}}$=f(x),函数的周期为4.
f(1)=2,则f(99)=f(100-1)=f(-1)=$\frac{1}{f(1)}$=$\frac{1}{2}$.
故选:A.

点评 本题考查抽象函数的应用,函数的周期的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.计算下列各式(式中字母都是正数):[81-0.25+(3$\frac{3}{8}$)${\;}^{-\frac{1}{3}}$]${\;}^{-\frac{1}{2}}$-10×0.027${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数fn(x)=xn+kx+m(n∈N+,k,m∈R)
(1)设n≥2,k=1,m=-1,证明:fn(x)在区间($\frac{1}{2}$,1)内存在唯一的零点
(2)设n=2,k=-2,集合D={f(x)|f(x)在定义域内存在区间[a,b],使得f(x)在[a,b]上的值域也为[a,b],是否存在实数m,当a+b≤2时,使得函数fn(x)∈D,若存在,求出m的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a、b、c为正实数,(a+b+c)2=16($\frac{1}{ab}$+$\frac{1}{bc}$+$\frac{1}{ac}$),则(a+b)(b+c)的最小值为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tan($\frac{π}{4}$+α)=3,且α为锐角.
(1)求tanα的值;
(2)求sin(α+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若集合A={x|x2+x-6=0},B={x|x2+x+a=0},且B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)满足f(x)+1=$\frac{1}{f(x+1)}$,当x∈[0,1]时,f(x)=x,函数g(x)=f(x)-mx-m在[-1,1]内有2个零点,则实数m的取值范围是(  )
A.(0,$\frac{1}{2}$]B.(-1,$\frac{1}{2}$]C.[$\frac{1}{2},+∞$)D.(-∞,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=$\left\{\begin{array}{l}{1-{x}^{2}(x≤1)}\\{{x}^{2}+x-2(x>1)}\end{array}\right.$,则f($\frac{1}{f(2)}$)=(  )
A.$\frac{15}{16}$B.-$\frac{27}{16}$C.$\frac{8}{9}$D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.方程组$\left\{\begin{array}{l}x+y-1=0\\ 2x-y+4=0\end{array}\right.$的解集表示正确的是(  )
A.{-1,2}B.{x=-1,y=2}C.{(-1,2)}D.{{-1},{2}}

查看答案和解析>>

同步练习册答案