精英家教网 > 高中数学 > 题目详情
如图,在棱长为a的正方体ABCD-A1B1C1D1
(1)画出二面角A1-BD-A的平面角;
(2)求出二面角A1-BD-A的正切值.
考点:二面角的平面角及求法
专题:空间位置关系与距离
分析:(1)取BD中点O,由已知得∠A1OA是二面角A1-BD-A的平面角.
(2)由AO=
1
2
AC=
1
2
2
a
,AA1=a,能求出二面角A1-BD-A的正切值.
解答: 解:(1)取BD中点O,
∵在棱长为a的正方体ABCD-A1B1C1D1中,
A1D=A1B=
2
a
,AB=AD=a,
∴A1O⊥BD,AO⊥BD,
∴∠A1OA是二面角A1-BD-A的平面角.
(2)∵AO=
1
2
AC=
1
2
2
a

AA1=a,
∴tan∠A1OA=
AA1
AO
=
a
1
2
2
a
=
2

∴二面角A1-BD-A的正切值为
2
点评:本题考查二面角的平面角的作法,考查二面角的正切值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题“?x∈R,x2-3x+8<0”的否定是(  )
A、?x∈R,x2-3x+8>0
B、?x∈R,x2-3x+8>0
C、?x∈R,x2-3x+8≥0
D、?x∈R,x2-3x+8≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
sin(x+φ),0<φ<
π
2
,且f(0)=1.
(1)求f(x)的解析式;
(2)已知f(α)=
4
5
π
2
<α<π,求sinα-cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex-1+
a
x
(a∈R).
(1)若函数f(x)在x=1处有极值,且函数g(x)=f(x)+b在(0,+∞)上有零点,求b的最大值;
(2)若f(x)在(1,2)上为单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-a2x+2
(1)若a≠0,求函数f(x)的单调区间;
(2)若不等式2xlnx≤f′(x)+a2+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2-3x.
(1)若函数f(x)在区间[1,+∞)上是增函数,求实数a的取值范围.
(2)若x=-
1
3
是函数f(x)的极值点,求函数f(x)在[1,a]上的最大值.
(3)设函数g(x)=f(x)-bx,在(2)的条件下,若函数g(x)恰有3个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)
x2
,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x-y-1=0是曲线y=f(x)的切线,求实a的值;
(Ⅲ)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-
1
2

(1)证明:(
1
Sn
)是等差数列
(2)设bn=
Sn
2n+1
)n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆的方程:x2+y2=2
(1)若点P(x,y)在圆上,求x+y的取值范围;
(2)过点P(2,4)作圆的切线PA、PB,A、B为切点.
①求PA,PB的方程;
②求直线AB的方程.

查看答案和解析>>

同步练习册答案