精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a(x-1)
x2
,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x-y-1=0是曲线y=f(x)的切线,求实a的值;
(Ⅲ)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(e为自然对数的底数)
考点:利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(1)求导数,利用导数求函数的单调性区间.
(2)求函数的导数,利用切点处的导数和切线斜率相等,求出a的值.
(3)利用导数求函数g(x)在闭区间上的最小值.
解答: 解:(1)∵函数f(x)=
a(x-1)
x2

f′(x)=
a(x-1)′•x2-a(x-1)•(x2)′
x4
=
a(2-x)
x3
(x≠0),
∵a>0,∴由f'(x)>0,得0<x<2,此时函数单调递增.
由f'(x)<0,得x>2或x<0,此时函数单调递减.
∴函数f(x)的单调增区间为(-∞,0)和(2,+∞),单调递减区间为(0,2).
(Ⅱ)设切点为(x,y),
由切线斜率k=1=
<ea-1<e,(1<a<2),
在区间g(x)和g(ea-1)=a-ea-1上,ea-1≥e;在区间y2=4x上,F.
所以,l的单调递减区间是M(4,0)和F,单调递增区间是l.
(Ⅱ)设切点为(x,y),
由切线斜率k=1=
a(2-x)
x3
,则x3=-ax+2a,①
由x-y-1=x-
a(x-1)
x2
-1=0,得(x2-a)(x-1)=0,解得x=1,x=±
a

把x=1代入①得a=1,
把x=
a
代入①得a=1,
把x=-
a
代入①得a=-1(舍去),
故所求实数a的值为1.
(Ⅲ)∵g(x)=xlnx-x2f(x)=xlnx-a(x-1),
∴g′(x)=lnx+1-a,解lnx+1-a=0得x=ea-1
故g(x)在区间(ea-1,+∞)上递增,在区间(0,ea-1)上递减,
①当ea-1≤1时,即0<a≤1时,g(x)在区间[1,e]上递增,其最小值为g(1)=0;
②当1<ea-1<e时,即0<a<2时,g(x)的最小值为g(ea-1)=a-ea-1
③当ea-1≥e,即a≥2时,g(x)在区间[1,e]上递减,其最小值为g(e)=e+a-ae.
点评:本题主要考查利用导数求闭区间上函数的最值、导数的几何意义,以及利用导数研究函数的单调性,分类讨论思想,是高考的常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinx-3x,x∈(-2,2),如果f(1-a)+f(1-a2)>0,则实数a的取值范围是(  )
A、(-∞,-2)∪(1,+∞)
B、(1,
3
C、(-2,1)
D、(-1,
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.
(Ⅰ)求边长a;
(Ⅱ)若△ABC的面积S=10,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为a的正方体ABCD-A1B1C1D1
(1)画出二面角A1-BD-A的平面角;
(2)求出二面角A1-BD-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,斜三棱柱ABC-A1B1C1的所有棱长都为2,侧面AA1BB1⊥底面ABC,D为CC1中点,E为A1B1的中点,∠ABB1=60°.
(1)求证:C1E∥平面A1BD;
(2)求证:AB1⊥平面A1BD;
(3)求点三棱锥A-A1BD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+ln(x+1)
x
(x>0).
(Ⅰ)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;
(Ⅱ)若f(x)>
k
x+1
对于?x∈(0,+∞)恒成立,求正整数k的最大值;
(Ⅲ)求证:(1+1×2)(1+2×3)(1+3×4)…[1+n(n+1)]>e2n-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(-8,y)为角α终边上的一点,且sinα=
3
5
,分别求y,cosα和tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知曲线C1:3x2+4y2=1,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(1)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的
3
、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;
(2)点P为曲线C2上一点,求点P到直线l的距离最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校对高一800名学生周末在家上网时间进行调查,抽取其中50个样本进行统计,发现上网的时间t(小时)全部介于0至5之间,现将上网时间按如下方式分成五组;第一组[0,1),第二组[1,2),第三组[2,3),第四组[3,4),第五组[4,5],如图是按上述分组方法得到的频率分布直方图.
(1)求该样本中上网时间t在[1,2)范围内的人数;
(2)请估计本年级800名学生中上网时间在[1,2)范围内的人数;
(3)若该样本中第三组只有两名女生,第五组只有一名女生,现从第三组和第五组中各抽一名同学进行座谈,求抽到的两名同学恰好是一名男生和一名女生的概率.

查看答案和解析>>

同步练习册答案