精英家教网 > 高中数学 > 题目详情
19.定义在R上的可导函数f(x)满足f(x)-f(-x)=2x3,当x∈(-∞,0]时f'(x)<3x2,实数a满足f(1-a)-f(a)≥-2a3+3a2-3a+1,则a的取值范围是(  )
A.$[{\frac{3}{2},+∞})$B.$({-∞,\frac{3}{2}}]$C.$[{\frac{1}{2},+∞})$D.$({-∞,\frac{1}{2}}]$

分析 令g(x)=f(x)-x3,由g(-x)=g(x),可得函数g(x)为偶函数.利用导数可得函数g(x)在(-∞,0)递减,在(0,+∞)递增,f(1-a)-f(a)≥-2a3+3a2-3a+1,即g(1-a)≥g(a),可得|1-a|≥|a|,由此解得a的范围

解答 解:令g(x)=f(x)-x3
则g(-x)=f(-x)-x3
则g(x)-g(-x)=f(x)-f(-x)-2x3=0,得g(x)为R上的偶函数,
∵x<0时,g'(x)=f'(x)-3x2<0,故g(x)在(-∞,0)单调递减,
再结合g(x)为偶函数,知g(x)在(0,+∞)单调递增,
又g(1-a)-g(a)=f(1-a)-(1-a)3-(f(a)-a3)=f(1-a)-f(a)+2a3-3a2+3a-1=0,
则g(1-a)≥g(a)等价于|1-a|≥|,解得a≤$\frac{1}{2}$,即a∈(-∞,$\frac{1}{2}$].
故选:D.

点评 本题主要考查函数的奇偶性、单调性的应用,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A.13πB.16πC.17πD.21π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示,则其表面积为(  )
A.18B.22C.21D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过点O(1,0)作函数f(x)=ex的切线,则切线方程为(  )
A.y=e2(x-1)B.y=e(x-1)C.y=e2(x-1)或y=e(x-1)D.y=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且满足Sn=2an-n,求数列{an}的通项公式.勤于思考的小红设计了下面两种解题思路,请你选择其中一种并将其补充完整.
思路1:先设n的值为1,根据已知条件,计算出a1=1,a2=3,a3=7.
猜想:an=2n-1
然后用数学归纳法证明.证明过程如下:
①当n=1时,a1=21-1,猜想成立
②假设n=k(k∈N*)时,猜想成立,即ak=2k-1.
那么,当n=k+1时,由已知Sn=2an-n,得Sk+1=2ak+1-(k+1).
又Sk=2ak-k,两式相减并化简,得ak+1=2k+1-1(用含k的代数式表示).
所以,当n=k+1时,猜想也成立.
根据①和②,可知猜想对任何k∈N*都成立.
思路2:先设n的值为1,根据已知条件,计算出a1=1.
由已知Sn=2an-n,写出Sn+1与an+1的关系式:Sn+1=2an+1-(n+1),
两式相减,得an+1与an的递推关系式:an+1=2an+1.
整理:an+1+1=2(an+1).
发现:数列{an+1}是首项为2,公比为2的等比数列.
得出:数列{an+1}的通项公式an+1=2n,进而得到an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ksin(2x+$\frac{π}{6}$)的图象过点(π,1).
(1)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的单调递增区间;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函数g(x)=$\frac{1}{2}$f2(x)-f(x+$\frac{π}{4}$)-1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.i是虚数单位,复数$\frac{1+3i}{1-i}$=-1+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.数列{an}满足a1=1,${a_n}•{a_{n+1}}={2^{n-1}}$,其前n项和为Sn,则
(1)a5=4;
(2)S2n=2n+1-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
①cos211°+sin241°-cos11°sin41°;
②cos222°+sin252°-cos22°sin52°;
③cos230°+sin260°-cos30°sin60°;
④cos244°+sin244°-cos44°sin74°;
⑤cos255°+sin285°-cos55°sin85°.
将该同学的发现推广三角恒等式为cos2α+sin2(α+30°)-cosαsin(α+30°)=$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案