精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)的图象是连续不断的,给出x,f(x)对应值如表:
x123456
f(x)23.521.4-7.811.5-5.7-12.4
函数f(x)在区间[1,6]上的零点至少有(  )
A.2个B.3个C.4个D.5个

分析 利用零点判定定理,直接找出几个即可.

解答 解:由图可知,f(2)>0,f(3)<0,f(4)>0,f(5)<0,由零点存在定理知在区间(2,3)上至少有一个零点,同理可以判断出在区间(3,4)、(4,5)上各至少有一个零点,所以在区间[1,6]上的零点至少有三个.
故选:B.

点评 本题考查零点判定定理的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知全集U=z,A={x|x2-x-2<0,x∈Z},B={-1,0,1,2},则图中阴影部分所表示的集合等于(  )
A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{bn}(n∈N*)是递增的等比数列,且b1+b3=5,b1•b3=4.
(Ⅰ)若an=log2bn+3,证明:数列{an}是等差数列;
(Ⅱ)若cn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\frac{1}{2}$sin2x+acosx在(0,π)上单调递增,则a的取值范围是(  )
A.(-∞,-1)B.[-1,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若圆x2+(y-2)2=1与椭圆$\frac{x^2}{m}$+$\frac{y^2}{n}$=1的三个交点构成等边三角形,则该椭圆的离心率的值为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设向量$\overrightarrow{a}$=(a1,a2),$\overrightarrow{b}$=(b1,b2),定义一种向量运算$\overrightarrow{a}$?$\overrightarrow{b}$=(a1b1,a2b2),已知向量$\overrightarrow{m}$=(2,$\frac{1}{2}$),$\overrightarrow{n}$=($\frac{π}{3}$,0),点P(x′,y′)在y=sinx的图象上运动.点Q(x,y)是函数y=f(x)图象上的动点,且满足$\overrightarrow{OQ}=m?\overrightarrow{OP}$+n(其中O为坐标原点),则函数y=f(x)的值域是(  )
A.$[{-\frac{1}{2},\frac{1}{2}}]$B.$({-\frac{1}{2},\frac{1}{2}})$C.[-1,1]D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=f(x),若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数f(x)的局部对称点.
(I)若a∈R且a≠0,求函数f(x)=ax2+x-a的“局部对称点”;
(II)若函数f(x)=4x-m•2x+1+m2-3在R上有局部对称点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.( I)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,计算:$\frac{{x}^{2}+{x}^{-2}-7}{x+{x}^{-1}+3}$;
( II)求(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=2|x|的定义域为[a,b],值域为[1,4],方程b=g(a)表示的图形可以是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案