精英家教网 > 高中数学 > 题目详情
函数f(x)对任意x∈R都有f(x)+f(1-x)=
1
2

(1)求f(
1
2
)
f(
1
n
)+f(
n-1
n
)(n∈N)
的值;
(2)数列{an}满足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
,求数列{an}的通项公式.
(3)令bn=
4
4an-1
Tn=
b
2
1
+
b
2
2
+
b
2
3
+…+
b
2
n
Sn=32-
16
n
试比较Tn与Sn的大小.
分析:(1)令x=
1
2
,得f(
1
2
) =
1
4
,令x=
1
n
得f(
1
n
)+f(1-
1
n
)=
1
2
=f(
1
n
)+f(
n-1
n
)

(2)an=f(0)+f(
1
n
)++f(
n-1
n
)+f(1)
,又an=f(1)+f(
n-1
n
)++f(
1
n
)+f(0)

两式相加能导出an
(3)bn=
4
4an-1
=
4
n
Tn=
b
2
1
+
b
2
2
++
b
2
n
=16(1+
1
22
+
1
32
++
1
n2
≤16[1+
1
1×2
+
1
2×3
++
1
n(n-1)
)
=16[1+(1-
1
2
)+(
1
2
-
1
3
)++(
1
n-1
-
1
n
)]
=32-
16
n
=Sn
,由此知Tn≤Sn
解答:解:(1)令x=
1
2
,得f(
1
2
) =
1
4

x=
1
n
得f(
1
n
)+f(1-
1
n
)=
1
2
=f(
1
n
)+f(
n-1
n
)

(2)an=f(0)+f(
1
n
)++f(
n-1
n
)+f(1)

an=f(1)+f(
n-1
n
)++f(
1
n
)+f(0)

两式相加2an=[f(0)+f(1)]+[f(
1
n
)+f(
n-1
n
)]++[f(1)+f(0)]

=
n+1
2
,∴an=
n+1
4

(3)bn=
4
4an-1
=
4
n
Tn=
b
2
1
+
b
2
2
++
b
2
n
=16(1+
1
22
+
1
32
++
1
n2

<16[1+
1
1×2
+
1
2×3
+…+
1
n(n-1)
]
=16[1+(1-
1
2
)+(
1
2
-
1
3
)++(
1
n-1
-
1
n
)]

=16(2-
1
n
)
=32-
16
n
=Sn

∴Tn≤Sn
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),当x≠0时,xf(x)<0,f(1)=-2
(1)求证:f(x)是奇函数;
(2)试问:在-2≤x≤2时,f(x)是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式
1
2
f(bx)-f(x)>
1
2
f(b2x)-f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
+a,x∈[1,+∞),且a<1
(1)判断f(x)单调性并证明;
(2)若m满足f(3m)>f(5-2m),试确定m的取值范围.
(3)若函数g(x)=xf(x)对任意x∈[2,5]时,g(x)+2x+
3
2
>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对任意的x1,x2∈R,且x1<x2,f(x1)≠f(x2)(a>0),试证明:
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(x-4)=f(2-x),且f(x)≥0;
②对任意的x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
?若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在(0,+∞)上的函数f(x)对任意x,y∈(0,+∞),都有f(x•y)=f(x)+f(y),且当x>1时f(x)<0.
(Ⅰ)求f(1)的值;
(Ⅱ)判断f(x)的单调性;
(Ⅲ)若f(2)=-1,解不等式f(x-2)+f(x)>-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),当x≠0时,xf(x)<0,f(1)=-2
(1)求证:f(x)是奇函数;
(2)试问:在-n≤x≤n时(n∈N*),f(x)是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式
1
2
f(bx2)-f(x)≥
1
2
f(b2x)-f(b),(b>0)

查看答案和解析>>

同步练习册答案