精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,点P(x,y)为动点,已知点数学公式数学公式,直线PA与PB的斜率之积为数学公式
(I)求动点P轨迹E的方程;
( II)过点F(1,0)的直线l交曲线E于M,N两点,设点N关于x轴的对称点为Q(M、Q不重合),求证:直线MQ过定点.

(I)解:由题知:…(2分)
化简得:…(4分)
(II)证明一:设M(x1,y1),N(x2,y2),Q(x2,-y2),l:x=my+1,
代入整理得(m2+2)y2+2my-1=0…(6分)
,…(8分)
∵MQ的方程为
令y=0,得…(10分)
∴直线MQ过定点(2,0).…(12分)
证明二:设M(x1,y1),N(x2,y2),Q(x2,-y2),l:y=k(x-1),
代入整理得(1+2k2)x2-4k2x+2k2-2=0…(6分)
,…(8分)
∵MQ的方程为
令y=0,得…(10分)
∴直线MQ过定点(2,0).…(12分)
分析:(I)利用直线PA与PB的斜率之积为,建立等式,化简,即可求得求动点P轨迹E的方程;
(II)设出直线方程,代入椭圆方程,利用韦达定理,求得直线方程,令y=0,即可证得结论.
点评:本题考查轨迹方程,考查直线与椭圆的位置关系,考查韦达定理的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案