分析 (1)由图象可求T,利用周期公式可求$ω=\frac{2}{3}$,φ,即可求得函数解析式;
(2)由(1)及正弦函数的单调性即可求得单调递增区间.
(3)由图知x=$\frac{7}{4}$π时,f(x)取最小值,结合函数的周期即可得解.
解答 解:(1)由图象可知,$\frac{T}{2}=\frac{7π}{4}-\frac{π}{4}=\frac{3π}{2}$,
∴T=3π,$ω=\frac{2}{3}$,φ=$\frac{π}{3}$,
∴f(x)=sin($\frac{2}{3}x+\frac{π}{3}$).
(2)由(1)可知当x=$\frac{7}{4}$π-3π=-$\frac{5}{4}$π时,函数f(x)取最小值,
∴f(x)的单调递增区间是[-$\frac{5π}{4}$+3kπ,$\frac{π}{4}$+3kπ](k∈Z).
(3)由图知x=$\frac{7}{4}$π时,f(x)取最小值,
又∵T=3π,∴当x=$\frac{7}{4}$π+3kπ时,f(x)取最小值.
所以f(x)取最小值时x的集合为:{x|x=$\frac{7π}{4}$+3kπ,k∈Z}.
点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质,属于基本知识的考查.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{π}{4}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{7}}}{2}$ | B. | $\frac{7}{2}$ | C. | $\frac{5}{2}$ | D. | $\frac{{\sqrt{7}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com