精英家教网 > 高中数学 > 题目详情
已知函数y=sin2x+2sinxcosx+3cos2x,x∈R.
(1)求该函数的单调增区间;
(2)求该函数的最大值及对应的x的值;
(3)求该函数的对称轴方程与对称中心坐标.
分析:(1)利用二倍角公式,降次升角,以及两角和的正弦函数,化简函数y=sin2x+2sinxcosx+3cos2x为y=
2
sin(2x+
π
4
)+2
,利用正弦函数的单调增区间,求该函数的单调增区间;
(2)利用正弦函数的最值以及取得最值时的x值,直接求该函数的最大值及对应的x的值;
(3)利用正弦函数的对称轴和对称中心,直接求该函数的对称轴方程与对称中心坐标.
解答:解:y=sin2x+2sinxcosx+3cos2x=
1-cos2x
2
+sin2x+
3(1+cos2x)
2

=sin2x+cos2x+2=
2
sin(2x+
π
4
)+2
.(5分)
(1)由-
π
2
+2kπ≤2x+
π
4
π
2
+2kπ
,得-
8
+kπ≤x≤
π
8
+kπ(k∈Z)

所以函数的单调增区间为[-
8
+kπ,  
π
8
+kπ](k∈Z).
(8分)
(2)令2x+
π
4
=
π
2
+2kπ
,得x=
π
8
+kπ(k∈Z)

所以当x=
π
8
+kπ(k∈Z)
时,ymax=2+
2
.(12分)
(3)由2x+
π
4
=
π
2
+kπ
,得x=
π
8
+
2
(k∈Z)

所以该函数的对称轴方程为x=
π
8
+
2
(k∈Z)

2x+
π
4
=kπ
,得x=-
π
8
+
2
(k∈Z)

所以,该函数的对称中心为:(-
π
8
+
2
,  0)(k∈Z)
.(16分)
点评:本题是基础题,考查正弦函数的单调性,对称轴方程,对称中心,最值,利用基本函数的基本性质,是集合本题的关键,基本知识掌握的好坏,直接影响解题效果.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=loga(x-1)+3(a>0且a≠1)的图象恒过定点P,若角α的终边经过点P,则sin2α-sin2α的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(x-1)+3(a>0且a≠1)的图象恒过点P,若角α的终边经过点P,则cos2α-sin2α的值等于
-
8
13
-
8
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),f(x)图象上每个点的纵坐标保持不变,将横坐标伸长到原来的2倍,然后再将整个图象沿x轴向左平移个单位,得到的曲线与y=sinx图象相同,则y=f(x)的函数表达式为(    )

A.y=sin(-)                     B.y=sin2(x+

C.y=sin(+)                     D.y=sin(2x-

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=loga(x-1)+3(a>0且a≠1)的图象恒过定点P,若角α的终边经过点P,则sin2α-sin2α的值等于(  )
A.
3
13
B.
5
13
C.-
3
13
D.-
5
13

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省衡水市冀州市高三(上)期中数学试卷A(理科)(解析版) 题型:选择题

已知函数y=loga(x-1)+3(a>0且a≠1)的图象恒过定点P,若角α的终边经过点P,则sin2α-sin2α的值等于( )
A.
B.
C.-
D.-

查看答案和解析>>

同步练习册答案