精英家教网 > 高中数学 > 题目详情
如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为(  )
A.B.C.D.
A
本题主要考查几何体体积的求法,解题的关键是将不规则的几何体分别分割成规则的几何体.
如图,过A,B两点分别作AM,BN垂直于EF,垂足分别为M,N,连接DM,CN,可证得DM⊥EF,CN⊥EF,多面体ABCDEF分为三部分,多面体的体积为VABCDEF=VAMD-BNC+VE-AMD+VF-BNC
∵NF=,BF=1,∴BN=
作NH垂直BC于点H,则H为BC的中点,
则NH=
∴SBNC·BC·NH=×1×
∴VF-BNC·SBNC·NF=
VE-AMD=VF-BNC
VAMD-BNC=SBNC·MN=
∴VABCDEF
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图1,在直角梯形中,,,.将沿折起,使平面平面,得到几何体,如图2所示.
(1)求证:⊥平面;(2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正方形的边长为,点分别在边上,,现将△沿线段折起到△位置,使得

(1)求五棱锥的体积;
(2)求平面与平面的夹角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面的几何体中,主(正)视图为三角形的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知某个几何体的三视图如下(主视图的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是(    )
A.B.16C.9D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方形的边长为2,点分别在边上,且,将此正
方形沿折起,使点重合于点,则三棱锥的体积是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·江苏高考]如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为       .

查看答案和解析>>

同步练习册答案