精英家教网 > 高中数学 > 题目详情
设函数f(x)=
-2ax2+bx+c
(a>0)的定义域为D,若所有点(s,f(t))(s,t∈D)构成一个正方形区域,则a的值为
 
考点:函数的定义域及其求法
专题:计算题,函数的性质及应用
分析:此题考查的是二次函数的性质问题.在解答时可以先将问题转化为方程,因为一个方程可以求解一个未知数.至于方程的给出要充分利用好“构成一个正方形区域”的条件.
解答: 解:由题意可知:所有点(s,f(t))(s,t∈D)构成一个正方形区域,
则对于函数f(x),其定义域的x的长度和值域的长度是相等的,
f(x)的定义域为-2ax2+bx+c≥0的解集,
设x1、x2是方程-2ax2+bx+c=0的根,且x1<x2
则x1+x2=
b
2a
,x1x2=-
c
2a

定义域的长度为|x1-x2|=
(x1+x2)2-4x1x2
=
b2
4a2
+
2c
a
=
b2+8ac
2a

而f(x)的值域为[0,
8ac+b2
8a
],
则有
8ac+b2
8a
=
b2+8ac
2a

∴8a=4a2
∴a=2.
故答案为:2.
点评:本题考查的是二次函数的性质问题.在解答的过程当中充分体现了问题转化的思想、解方程的思想以及运算的能力.值得同学们体会反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

观察下列方程,并回答问题:
①x2-1=0;②x2+x-2=0;③x2+2x-3=0;④x2+3x-4=0;….
(1)请你根据这列方程的特点写出第n个方程;
(2)直接写出第2009个方程的根;
(3)说出这列方程的根的一个共同特点.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列几个式子,①tan25°+tan35°+
3
tan25°tan35°,②
1+tan15°
1-tan15°
,③2(sin35°cos25°+sin55°cos65°).结果为
3
的是(  )
A、①②B、①③C、①②③D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3x-1
3x+1
(x∈R).
(1)求函数f(x)的值域;
(2)判断函数f(x)的奇偶性;
(3)用定义判断函数f(x)的单调性;
(4)解不等式f(1-m)+f(1-m2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1+3x•a
的定义域为(-∞,1],则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
4x-x2
的值域是(  )
A、[-2,2]
B、[1,2]
C、[0,2]
D、[0,
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合U={1,2,3,4,5},A={2,3,4},B={2,5},则集合B∪(∁UA)=(  )
A、{5}B、{1,2,5}
C、UD、φ

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)0.064 -
1
3
-(-
7
8
0+[(-2)3] -
4
3
-5 log52+16-0.75+|-0.01| 
1
2

(2)(log25-log4125)
log32
log
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x2+ax+b<0的解集是A∩B,那么a+b等于
 

查看答案和解析>>

同步练习册答案