精英家教网 > 高中数学 > 题目详情

   已知函数(其中).

(Ⅰ)若函数在点处的切线为,求实数的值;

(Ⅱ)求函数的单调区间.

(Ⅰ)    (Ⅱ)当时,函数的单调递增区间为;当时,函数的单调递增区间为

单调递减区间为.             


解析:

,可得.                           ……………….2分

(Ⅰ)因为函数在点处的切线为,得:

                                                                        ……………….4分

解得                                                                    ……………….5分

(Ⅱ)令,得… ①                                ……………….6分

      当,即时,不等式①在定义域内恒成立,所以此时函数的单调递增区间为.                             ……………….8分

,即时,不等式①的解为

……………….10分

又因为,所以此时函数的单调递增区间为,单调递减区间为.

.……………….12分

所以,当时,函数的单调递增区间为

时,函数的单调递增区间为

单调递减区间为.             

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年临沂市质检一文)(14分)已知函数(其中a>0),且在点(0,0)处的切线与直线平行。

   (1)求c的值;

   (2)设的两个极值点,且的取值范围;

   (3)在(2)的条件下,求b的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

⒗ 已知函数,其中为实数,且处取得的极值为

⑴求的表达式;

⑵若处的切线方程。

  

查看答案和解析>>

科目:高中数学 来源:2013-2014学年北京市西城区高三上学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数,其中是自然对数的底数,.

函数的单调区间

时,求函数的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海黄浦区高三上学期期末考试(即一模)文数学卷(解析版) 题型:解答题

已知函数(其中是实数常数,

(1)若,函数的图像关于点(—1,3)成中心对称,求的值;

(2)若函数满足条件(1),且对任意,总有,求的取值范围;

(3)若b=0,函数是奇函数,,且对任意时,不等式恒成立,求负实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届陕西省高二上学期期末考试理科数学试卷(解析版) 题型:选择题

已知函数(其中)的图象如图(上)所示,则函数的图象是(  )                                                    

 

查看答案和解析>>

同步练习册答案