精英家教网 > 高中数学 > 题目详情

(13分)已知函数f(x)=lnx,g(x)=(a≠0)
(1)若b=2,且h(x)=f(x)-g(x)在定义域上不单调,求a的取值范围;
(2)若a=1,b=-2设f(x)的图象C1与g(x)的图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1,C2于点M、N,M、N的横坐标是m,求证:f'(m)<g'(m)。

(1)h(x)=lnx--2x,x,h'(x)=在(0,+)有实根,且不为重根。解得:a(-1,0)(0,+)。
(2)见解析。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)
设函数
⑴当且函数在其定义域上为增函数时,求的取值范围;
⑵若函数处取得极值,试用表示
⑶在⑵的条件下,讨论函数的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知
(1)当时,求曲线在点处的切线方程;
(2)若在区间上是增函数,求实数的取值范围
(3)在(2)的条件下,设关于的方程的两个根为,若对任意
,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题分12分)                        
定义.
(Ⅰ)求曲线与直线垂直的切线方程;
(Ⅱ)若存在实数使曲线点处的切线斜率为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,当时取极小值
(1)求的解析式;
(2)如果直线与曲线的图象有三个不同的交点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数
(1)判断函数上的单调性;
(2)是否存在实数,使曲线在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为奇函数,
(1)求实数a的值。
(2)若上恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的极值
(2)当时,求的单调区间
(3)若对任意的,恒有成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)设函数
(1)求证:的导数
(2)若对任意都有求a的取值范围。

查看答案和解析>>

同步练习册答案