精英家教网 > 高中数学 > 题目详情
15.设a∈R,若函数f(x)=ax-ex在区间(1,+∞)单调递减,则a的最大值为e.

分析 函数f(x)=ax-ex在区间(1,+∞)上单调递减?函数f′(x)=a-ex≤0在区间(1,+∞)上恒成立,?a≤[ex]min在区间(1,+∞)上成立.求解即可.

解答 解:f′(x)=a-ex
∵函数f(x)=ax-ex在区间(1,+∞)上单调递减?函数f′(x)=a-ex≤0在区间(1,+∞)上恒成立,
∴a≤[ex]min在区间(1,+∞)上成立.
而ex>e,
∴a≤e.
故答案为:e.

点评 本题考查函数的导数的应用,正确把问题等价转化、熟练掌握利用导数研究函数的单调性、极值与最值等是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.某地一天6时至20时的温度y(°C)随时间x(小时)的变化近似满足函数y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20,x∈[6,20].在上述时间范围内,温度不低于20°C的时间约有8小时.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.sin(-2040°)的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等比数列{an}的各项均为正数,且a2015=a2014+2a2013,若数列中存在两项am,an,使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,则$\frac{1}{m}+\frac{4}{n}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{25}{6}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.类比平面内的性质“平行于同一条直线的两条直线互相平行”,可得出空间内的下列结论:①平行于同一条直线的两个平面互相平行;②平行于同一个平面的两条直线互相平行;③平行于同一个平面的两个平面互相平行;④平行于同一条直线的两条直线互相平行.其中正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某电视台的一个综艺栏目对5个不同的节目排演出顺序,若最前只能排节目甲或乙,最后不能排节目甲,则不同的排法共有52种(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.阅读如图的程序框图,运行相应的程序,当输入n的值为10时,输出S的值为(  )
A.49B.52C.54D.55

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,AB=3,BC=2,AC=$\sqrt{17}$,AD为BC边上的中线,则△ABD内切圆半径r的值为2$\sqrt{2}$-$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}中,a1=2,a2n=an+1,a2n+1=n-an则{an}的前100项和为1289.

查看答案和解析>>

同步练习册答案