精英家教网 > 高中数学 > 题目详情
18.已知F1为椭圆C1:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}$=1的上焦点,F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=$\frac{5}{3}$.
(1)求椭圆C1的方程;
(2)过F1点作互相垂直的两条直线分别交抛物线C2于A,B两点,交椭圆C1于C,D两点,求四边形ABCD的最小值.

分析 (1)由抛物线C2:x2=4y的焦点(0,1),即c=1,则|MF1|=yM+1=$\frac{5}{3}$,则yM=$\frac{2}{3}$,丨MF2丨=$\sqrt{(\frac{2\sqrt{6}}{3})^{2}+(\frac{2}{3}+1)^{2}}$=$\frac{7}{3}$,由椭圆的定义可知:2a=|MF1|+丨MF2丨=4,则b2=3,即可求得椭圆C1的方程;
(2)直线AB,y=kx+1,则CD:x=-k(y-1),分别代入抛物线方程及椭圆方程,利用韦达定理及弦长公式,即可求得S=$\frac{1}{2}$丨AB丨丨CD丨=$\frac{24(1+{k}^{2})^{2}}{3+4{k}^{2}}$,利用换元法及函数的单调性即可求得四边形ABCD的最小值.

解答 解:(1)由题意可知:抛物线C2:x2=4y的焦点(0,1),则a2-b2=1,
由抛物线的定义可知:|MF1|=yM+1=$\frac{5}{3}$,则yM=$\frac{2}{3}$,
则M(-$\frac{2\sqrt{6}}{3}$,$\frac{2}{3}$),椭圆的下焦点为F2,丨MF2丨=$\sqrt{(\frac{2\sqrt{6}}{3})^{2}+(\frac{2}{3}+1)^{2}}$=$\frac{7}{3}$,
由椭圆的定义可知:2a=|MF1|+丨MF2丨=4,a=2,
b2=3,
∴椭圆的方程:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1$;
(2)设直线AB,y=kx+1,则CD:x=-k(y-1),
$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}=4y}\end{array}\right.$,y2-(4k2+2)y+1=0,
设A(x1,y1),B(x2,y2),
则丨AB丨=y1+y2+p=4k2+4,
$\left\{\begin{array}{l}{x=-k(y-1)}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,整理得:(4k2+3)y2-8k2y+4k2-12=0,
设A(x3,y3),B(x4,y4),
则y3+y4=$\frac{8{k}^{2}}{4{k}^{2}+3}$,y3•y4=$\frac{4{k}^{2}-12}{4{k}^{2}+3}$,
丨CD丨=$\sqrt{1+{k}^{2}}$•丨y3-y4丨=$\frac{12({k}^{2}+1)}{4{k}^{2}+3}$,
则四边形ABCD的面积S,S=$\frac{1}{2}$丨AB丨丨CD丨=$\frac{24(1+{k}^{2})^{2}}{3+4{k}^{2}}$,
令t=3+4k2(t≥3),
则S=$\frac{3}{2}$(t+$\frac{1}{t}$+2)≥8,
当t=3,即k=0时,四边形ABCD的最小值8.

点评 本题考查椭圆的标准方程及抛物线的性质,直线与椭圆的位置关系,考查韦达定理及弦长公式的应用,考查函数的单调性与圆锥曲线的综合应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图,矩形长为5,宽为3,在矩形内随机撒100颗黄豆,数得落在椭圆内的黄豆数为60颗,以此实验数据为依据可以估算椭圆的面积约为(  )
A.11B.9C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在空间直角坐标系中,已知$\overrightarrow{a}$=(2,2,-1),$\overrightarrow{b}$=(-1,3,1),则$\overrightarrow{a}$、$\overrightarrow{b}$夹角的余弦值是$\frac{\sqrt{11}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,已知a,b,c三边上的高ha=3,hb=4,hc=5,则sinA:sinB:sinC=20:15:12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将两颗骰子各掷一次,设事件A=“两个点数都是偶数”,则概率P(A)等于(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若当x∈R时,函数f(x)=a|x|(a>0且a≠0)始终满足f(x)≥1,则函数$y=\frac{{{{log}_a}|x|}}{x^3}$的大致图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知奇函数f(x)满足:(1)定义域为R;(2)f(x)>-2;(3)在(0,+∞)上单调递减;(4)对于任意的d∈(-2,0),总存在x0,使f(x0)<d.请写出一个这样的函数解析式:f(x)=-2($\frac{{2}^{x}-1}{{2}^{x}+1}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知:函数f(x)=x2,g(x)=2x-a,若对任意的x1∈[-1,2],存在x2∈[0,2]使得f(x1)>g(x2),则实数a的取值范围a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设等比数列{an}的前n项和为Sn,若S5、S4、S6成等差数列,则数列{an}的公比q的值等于-2.

查看答案和解析>>

同步练习册答案