精英家教网 > 高中数学 > 题目详情

【题目】已知圆,直线过点

1)若直线的斜率为,证明:与圆相切;

2)若直线与圆交于两点,且,求直线的斜率.

【答案】1)证明见解析;(2

【解析】

由圆的方程可得圆心和半径;

1)根据直线点斜式可得直线方程,利用点到直线距离公式可求得圆心到直线距离,根据可证得直线与圆相切;

2)当直线斜率不存在时,不满足题意,则可设点斜式方程,整理得到一般式方程;利用垂径定理可利用弦长构造出关于的方程,解方程求得结果.

由圆知:圆心,半径

1)由题意得:直线的方程为,即

圆心到直线的距离

直线与圆相切

2)当直线斜率不存在时,方程为:,此时直线与圆相切,不合题意

直线斜率存在,可设其方程为,即

圆心到直线的距离

,化简得:

解得:

即直线的斜率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段……后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:

1)求出物理成绩低于50分的学生人数;

2)估计这次考试物理学科及格率(60分以上为及格);

3)从物理成绩不及格的学生中选x人,其中恰有一位成绩不低于50分的概率为,求此时x的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 经过椭圆 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆 两点,且).

(1)求椭圆的方程;

(2)当三角形的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取极大值,在处取极小值.

(1)若,求函数的单调区间和零点个数;

(2)在方程的解中,较大的一个记为;在方程的解中,较小的一个记为,证明:为定值;

(3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,取相同的长度单位,若曲线的极坐标方程为,曲线的参数方程为为参数),设是曲线上任一点,是曲线上任一点.

(1)求交点的极坐标;

(2)已知直线,点在曲线上,求点的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示.

5

6

5

8

6

0

1

3

6

2

4

6

9

7

1

2

7

1

3

8

0

1

8

1

(1)分别求甲乙两个小组成绩的平均数与方差;

(2)分析比较甲乙两个小组的成绩;

(3)从甲组高于70分的同学中,任意抽取2名同学,求恰好有一名同学的得分在[80,90)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】徐州、苏州两地相距500千米,一辆货车从徐州匀速行驶到苏州,规定速度不得超过100千米/小时.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.01;固定部分为元(0).

1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;

2)为了使全程运输成本最小,汽车应以多大速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数的导数.

(1)yx4-3x2-5x+6;

(2)y=3x2xcos x

(3)y

(4)y=lg x

(5)y.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P是圆上一动点,x轴于点D.记满足的动点M的轨迹为Γ.

(1)求轨迹Γ的方程;

(2)已知直线与轨迹Γ交于不同两点AB,点G是线段AB中点,射线OG交轨迹Γ于点Q,且.

证明:

AOB的面积S(λ)的解析式,并计算S(λ)的最大值.

查看答案和解析>>

同步练习册答案