精英家教网 > 高中数学 > 题目详情

(12分)设函数.          
(1)对于任意实数,恒成立,求的最大值;
(2)若方程有且仅有一个实根,求的取值范围

解:(1) ,
因为,, 即恒成立,
所以, 得,即的最大值为
(2) 因为当时,;当时, ;当时, ;
所以当时,取极大值;           
时,取极小值;
故当 或时, 方程仅有一个实根. 解得.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)给定函数
(1)试求函数的单调减区间;
(2)已知各项均为负的数列满足,求证:
(3)设为数列的前项和,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知.
(1)求函数的单调区间;
(2)若对任意恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

( 12分)设函数
(1)写出定义域及的解析式;
(2)设,讨论函数的单调性;
(3)若对任意,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)时,求的极值
(2)当时,讨论的单调性。
(3)证明:,其中无理数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知,函数.
(1)当时讨论函数的单调性;
(2)当取何值时,取最小值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

,则              

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f (x)=ax-ln(-x),x∈(-e,0),g(x)=-,其中e是自然常数,a∈R.
(1)讨论a=-1时, f (x)的单调性、极值;
(2)求证:在(1)的条件下,|f (x)|>g(x)+1/2;
(3)是否存在实数a,使f (x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数的图象过点(1, -4),且函数的图象关于y轴对称.
(1) 求m、n的值及函数的极值;
(2) 求函数在区间上的最大值。

查看答案和解析>>

同步练习册答案