精英家教网 > 高中数学 > 题目详情
8.袋中有红、白色球各一个,每次任取一个,有放回地抽三次,
(1)写出所有的基本事件;
(2)求三次颜色全相同的概率;
(3)求三次抽取的球中红色球出现的次数多于白色球出现的次数的概率.

分析 (1)写出所有基本事件,求出总个数,
(2)求出三次颜色全相同的基本事件个数,代入古典概型概率公式计算;
(3)求出三次抽取的红球数多于白球数的基本事件个数,代入古典概型概率公式计算

解答 解:(1)由题意,基本事件共有23=8个结果,分别是(红,红,红),(红,红,白),(红,白,红),(白,红,红),
(红,白,白),(白,红,白),(白,白,红),(白,白,白).
(2)三次颜色全相同有2个结果,
∴三次颜色全相同的概率为$\frac{2}{8}$=$\frac{1}{4}$;
(3)三次抽取的红球数多于白球数的有4个结果,
∴三次抽取的红球数多于白球数的概率为$\frac{4}{8}$=$\frac{1}{2}$.

点评 本题考查了等可能事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=$\frac{m}{n}$.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知定义在[1,+∞)上的函数f(x)=$\left\{\begin{array}{l}4-8|{x-\frac{3}{2}}|,1≤x≤2\\ \frac{1}{2}f(\frac{x}{2}),x>2\end{array}$,给出下列结论:
(1)函数f(x)的值域为[0,4];
(2)关于x的方程$f(x)={(\frac{1}{2})^n}$(n∈N*)有2n+4个不相等的实数根;
(3)当x∈[2n-1,2n](n∈N*)时,函数f(x)的图象与x轴围成的图形面积为2;
(4)存在x0∈[1,8],使得不等式x0f(x0)>6成立,
其中正确的结论个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某旅馆有三人间、两人间、单人间三种房间(每种房间仅能入住相应人数)各一间可用,有4个成年男性带2个小男孩来投宿,小孩不宜单住一间(必须有成人陪同).若三间房都住有人,则不同的安排住宿方法有36种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:函数y=-(m-2)x为减函数;命题q:方程x2+(m-2)x+1=0无实根.若p∨q为真,p∧q为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\overrightarrow{OA}$=$\overrightarrow{i}+3\overrightarrow{k}$,$\overrightarrow{OB}$=$\overrightarrow{j}+3\overrightarrow{k}$,则△OAB的面积为(  )
A.$\frac{\sqrt{19}}{2}$B.2$\sqrt{19}$C.$\sqrt{19}$D.8$\sqrt{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明下列不等式
(1)已知a>0,b>0,判断a3+b3与a2b+ab2的大小,并证明你的结论.
(2)已知x∈R,a=x2+$\frac{1}{2}$,b=2-x,c=x2-x+1,证明a,b,c至少有一个不小于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式 f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.7个人排成一排,按下列要求各有多少种排法?
(1)其中甲不站排头,乙不站排尾;
(2)其中甲、乙、丙3人两两不相邻;
(3)其中甲、乙中间有且只有1人;
(4)其中甲、乙、丙按从左到右的顺序排列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,∠BAC=90°,D是BC边的中点,AE⊥AD,AE交CB的延长线于E,则下面结论中正确的是(  )
A.△AED∽△ACBB.△AEB∽△ACDC.△BAE∽△ACED.△AEC∽△DAC

查看答案和解析>>

同步练习册答案