精英家教网 > 高中数学 > 题目详情
椭圆
x2
9
+
y2
4
=1
的焦点F1、F2,点P是椭圆上动点,当∠F1PF2为钝角时,点P的横坐标的取值范围是
 
分析:设p(x,y),根据椭圆方程求得两焦点坐标,根据∠F1PF2是钝角推断出PF21+PF22<F1F22代入p坐标求得x和y的不等式关系,求得x的范围.
解答:解:设p(x,y),则F1(-
5
,0),F2(
5
,0)

且∠F1PF2是钝角
?P
F
2
1
+P
F
2
2
F1
F
2
2
?(x+
5
)2+y2+(x-
5
)2+y2<20

?x2+5+y2<10
?x2+4(1-
x2
9
)<5

?x2
9
5
?-
3
5
5
<x<
3
5
5

故答案为:-
3
5
5
<x<
3
5
5
点评:本题主要考查了椭圆的简单性质和解不等式,∠F1PF2是钝角推断出PF21+PF22<F1F22,是解题关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2为椭圆
x2
9
+
y2
4
=1
的两个焦点,P为椭圆上的一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求
|PF1|
|PF2|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是椭圆
x2
9
+
y2
4
=1
的两个焦点,P是椭圆上的点,且丨PF1丨:丨PF2丨=2:1,则△PF1F2的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
9
+
y2
4
=1
内有一点P(2,1),过点P作直线交椭圆于A、B两点.
(1)若弦AB恰好被点P平分,求直线AB的方程;
(2)当原点O到直线AB的距离取最大值时,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P(x,y)为椭圆
x2
9
+
y2
4
=1
上的动点,A(a,0)(0<a<3)为定点,已知|AP|的最小值为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是椭圆
x2
9
+
y2
4
=1
的两个焦点,P是椭圆上一点,若△PF1F2是直角三角形,且|PF1|>|PF2|,则
|PF1|
|PF2|
的值为(  )

查看答案和解析>>

同步练习册答案