精英家教网 > 高中数学 > 题目详情
18.在直角坐标系中,直线l:$\left\{\begin{array}{l}x=2+tcosa\\ y=1+tsina\end{array}$(t为参数,0≤a<π),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=4cosθ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)已知点P(2,1),若直线l与曲线C交于A,B两点,且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,求tana.

分析 (Ⅰ)曲线C:ρ=4cosθ,把ρ2=x2+y2,x=ρcosθ代入即可化为直角坐标方程.
(II)把直线l:$\left\{\begin{array}{l}x=2+tcosa\\ y=1+tsina\end{array}$(t为参数,0≤a<π)代入曲线C的直角坐标方程可得:t2+2tsina-3=0,由$\overrightarrow{AP}$=2$\overrightarrow{PB}$,可得t1=-2t2.再利用根与系数的关系及其三角函数基本关系式即可得出.

解答 解:(Ⅰ)C:ρ=4cosθ,得到C:ρ2=4ρcosθ,
因为$\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$,则曲线C的直角坐标方程为x2+y2-4x=0.
(Ⅱ)将$l:\left\{\begin{array}{l}x=2+tcosa\\ y=1+tsina\end{array}\right.$代入x2+y2-4x=0,得到t2+2tsina-3=0.
$\left\{\begin{array}{l}{t_1}+{t_2}=-2sina\\{t_1}•{t_2}=-3\end{array}\right.$,
又因为$\overrightarrow{AP}=2\overrightarrow{PB}$,则t1=-2t2
所以$\left\{\begin{array}{l}{t_1}+{t_2}=-2sina\\{t_1}•{t_2}=-3\\{t_1}=-2{t_2}\end{array}\right.$.
解得:$sina=\frac{{\sqrt{6}}}{4}$,$cosa=\frac{{\sqrt{10}}}{4}$或$cosa=-\frac{{\sqrt{10}}}{4}$,则$tana=\frac{{\sqrt{15}}}{5}$或$tana=-\frac{{\sqrt{15}}}{5}$.

点评 本题考查了直角坐标与极坐标的互化、三角函数的基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知角α的终边经过点P($\frac{4}{5}$,-$\frac{3}{5}$).
(1)求cosα的值;
(2)求$\frac{sin(\frac{π}{2}-α)}{sin(α+π)}$•$\frac{tan(α-π)}{cos(3π-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\sqrt{4-|x|}$+lg$\frac{{{x^2}-5x+6}}{x-3}$的定义域为(2,3)∪(3,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和Sn=n2+9n.
(1)求数列{an}的通项公式an
(2)求数列{$\frac{2}{{a}_{n}•{a}_{n+2}}$}的前100项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-x2+mx-3(m∈R),g(x)=xlnx
(Ⅰ)若f(x)在x=1处的切线与直线3x-y+3=0平行,求m的值;
(Ⅱ)求函数g(x)在[a,a+2](a>0)上的最小值;
(Ⅲ)?x∈(0,+∞)都有f(x)≤2g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+4x-3,x≤1\\ lnx,\;\;\;\;\;\;\;\;\;\;\;\;\;x>1.\end{array}$,若|f(x)|+a≥ax,则a的取值范围是[-2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)=$\left\{{\begin{array}{l}{1,(1≤x≤2)}\\{x-1,(2<x≤3)}\end{array}}$对于实数a将g(x)=f(x)-ax在x∈[1,3]中的最大值与最小值的差记作p(a),当a在实数范围内取值时,求:p(a)的最小值,并求此时的a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.以下是搜集到的开封市祥符区新房屋的销售价格y(万元)和房屋的面积x(m2)的数据:
x8095100110115
y18.421.623.224.827
已知变量x和y线性相关.
(Ⅰ)求$\overline{x}$、$\overline{y}$,及线性回归方程;
(Ⅱ)据(Ⅰ)的结果估计当房屋面积为85m2时的销售价格.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设p:函数f(x)=2|x-a|在区间(4,+∞)上单调递增;q:loga2<1,如果“¬p”是真命题,“p或q”也是真命题,则实数a的取值范围为a>4.

查看答案和解析>>

同步练习册答案