分析 (Ⅰ)曲线C:ρ=4cosθ,把ρ2=x2+y2,x=ρcosθ代入即可化为直角坐标方程.
(II)把直线l:$\left\{\begin{array}{l}x=2+tcosa\\ y=1+tsina\end{array}$(t为参数,0≤a<π)代入曲线C的直角坐标方程可得:t2+2tsina-3=0,由$\overrightarrow{AP}$=2$\overrightarrow{PB}$,可得t1=-2t2.再利用根与系数的关系及其三角函数基本关系式即可得出.
解答 解:(Ⅰ)C:ρ=4cosθ,得到C:ρ2=4ρcosθ,
因为$\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$,则曲线C的直角坐标方程为x2+y2-4x=0.
(Ⅱ)将$l:\left\{\begin{array}{l}x=2+tcosa\\ y=1+tsina\end{array}\right.$代入x2+y2-4x=0,得到t2+2tsina-3=0.
$\left\{\begin{array}{l}{t_1}+{t_2}=-2sina\\{t_1}•{t_2}=-3\end{array}\right.$,
又因为$\overrightarrow{AP}=2\overrightarrow{PB}$,则t1=-2t2,
所以$\left\{\begin{array}{l}{t_1}+{t_2}=-2sina\\{t_1}•{t_2}=-3\\{t_1}=-2{t_2}\end{array}\right.$.
解得:$sina=\frac{{\sqrt{6}}}{4}$,$cosa=\frac{{\sqrt{10}}}{4}$或$cosa=-\frac{{\sqrt{10}}}{4}$,则$tana=\frac{{\sqrt{15}}}{5}$或$tana=-\frac{{\sqrt{15}}}{5}$.
点评 本题考查了直角坐标与极坐标的互化、三角函数的基本关系式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 80 | 95 | 100 | 110 | 115 |
| y | 18.4 | 21.6 | 23.2 | 24.8 | 27 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com