精英家教网 > 高中数学 > 题目详情
8.已知角α的终边经过点P($\frac{4}{5}$,-$\frac{3}{5}$).
(1)求cosα的值;
(2)求$\frac{sin(\frac{π}{2}-α)}{sin(α+π)}$•$\frac{tan(α-π)}{cos(3π-α)}$的值.

分析 (1)由两点间的距离公式求得点P到原点的距离,然后由余弦函数的定义进行解答;
(2)由诱导公式和同角三角函数关系进行化简求值.

解答 解:(1)P点到原点O的距离$r=\sqrt{{{({\frac{4}{5}})}^2}+{{({-\frac{3}{5}})}^2}}=1$
由三角函数定义有$cosα=\frac{x}{r}=\frac{4}{5}$(6分)
(2)$\frac{{sin(\frac{π}{2}-α)}}{sin(α+π)}•\frac{tan(α-π)}{cos(3π-α)}=\frac{cosα}{-sinα}•\frac{-tan(π-α)}{cos(π-α)}$
$\begin{array}{l}=\frac{cosα}{sinα}•\frac{{\frac{sin(π-α)}{cos(π-α)}}}{-cosα}\\=\frac{cosα}{sinα}•\frac{sinα}{{{{cos}^2}α}}=\frac{1}{cosα}=\frac{5}{4}\end{array}$

点评 此题考查了诱导公式的作用,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.存在函数f(x)满足:对任意x∈R,都有(  )
A.f(sinx)=sin2xB.f(cosx)=sin2xC.f(x2-2x)=|x-1|D.f(|x-1|)=x2-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}满足an+1+(-1)nan=2n-1,则{an}的前64项和为2080.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设Sn是数列{an}的前项和,且a1=1,an+1=an+2,则Sn=n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=3sin(2x+$\frac{π}{6}$)-1,x∈R
(1)求f(x)取最大值时x的集合;
(2)把y=sinx通过怎样的变换可得f(x)=3sin(2x+$\frac{π}{6}$)-1,x∈R的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,a,b,c分别是角A,B,C的对边,向量$\overrightarrow p$=(1,-$\sqrt{3}$),$\overrightarrow q$=(cosB,sinB),$\overrightarrow p∥\overrightarrow q$,且bcos C+ccos B=2asin A,则角C等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的公差为2,若a3=4,求a12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=3x-x3,则函数f(x)的极大值点为(  )
A.-1B.1C.(-1,-2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系中,直线l:$\left\{\begin{array}{l}x=2+tcosa\\ y=1+tsina\end{array}$(t为参数,0≤a<π),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=4cosθ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)已知点P(2,1),若直线l与曲线C交于A,B两点,且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,求tana.

查看答案和解析>>

同步练习册答案