精英家教网 > 高中数学 > 题目详情
10.设f(x)=$\left\{{\begin{array}{l}{1,(1≤x≤2)}\\{x-1,(2<x≤3)}\end{array}}$对于实数a将g(x)=f(x)-ax在x∈[1,3]中的最大值与最小值的差记作p(a),当a在实数范围内取值时,求:p(a)的最小值,并求此时的a的值.

分析 由已知可求出g(x)的解析式,分类讨论出函数在各段上的单调性,进而求出函数的最值的表达式,进而可得p(a)的表达式,进而可求出p(a)的最小值.

解答 解:∵f(x)=$\left\{{\begin{array}{l}{1,(1≤x≤2)}\\{x-1,(2<x≤3)}\end{array}}$对于实数a将g(x)=f(x)-ax,
∴g(x)=$\left\{\begin{array}{l}{1-ax,1≤x≤2}\\{(1-a)x-1,2<x≤3}\end{array}\right.$
当1≤x≤2时,g(x)max=1-a,g(x)min=1-2a,
当2≤x≤3时,若0≤a≤1,则g(x)在[2,3]上递增,
g(x)max=2-3a,g(x)min=1-2a,
当a>1时,则g(x)在[2,3]上递减,
g(x)max=1-2a,g(x)min=2-3a,
∴0<a≤$\frac{1}{2}$,g(x)max=2-3a,g(x)min=1-2a
当$\frac{1}{2}$<a≤1,g(x)max=1-a,g(x)min=2-3a
当a>1时,g(x)max=1-a,g(x)min=2-3a,
当a≤0时,g(x)max=2-3a,g(x)min=1-2a

∴$p(a)=\left\{{\begin{array}{l}{1-2a,(a≤0)}\\{1-a,(0<a≤\frac{1}{2})}\\{a,(\frac{1}{2}<a≤1)}\\{2a-1,(a>1)}\end{array}}\right.$
当a=$\frac{1}{2}$时最小值为$\frac{1}{2}$

点评 本题考查的知识点是函数的最值及其几何意义,分段函数,其中分段函数分段处理是解答此类问题的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的公差为2,若a3=4,求a12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,已知在圆锥SO中,底面半径r=1,母线长l=4,M为母线SA上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A,求绳子最短时,顶点到绳子的最短距离$\frac{4x}{\sqrt{{x}^{2}+16}}$(用x表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系中,直线l:$\left\{\begin{array}{l}x=2+tcosa\\ y=1+tsina\end{array}$(t为参数,0≤a<π),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=4cosθ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)已知点P(2,1),若直线l与曲线C交于A,B两点,且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,求tana.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A={x|-x2+1<0},B={x|x2+x≤6},则A∩B=(  )
A.{x|-3≤x<-1或1<x≤2}B.{x|-3<x≤-1或1<x<2}C.{x|-3≤x≤-1或1≤x<2}D.{x|-3≤x≤-1或1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如下程序框图是由直角三角形两条直角边a,b求斜边的算法,其中正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方体,E,F分别是棱B1B,DA的中点.
(1)求证:BF∥平面AD1E;
(2)求二面角D1-AE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题,正确的是(  )
A.命题“?x0∈R,使得x02-1<0”的否定是“?x∈R,均有x2-1>0”
B.命题“存在四边相等的空间四边形不是正方形”,该命题是假命题
C.命题“若x2=y2,则x=y”的逆否命题是真命题
D.命题“若x=3,则x2-2x-3=0”的否命题是“若x≠3,则x2-2x-3≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{2}$x2-(a2-a)lnx-x(a<0),且函数f(x)在x=2处取得极值.
(I)求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)若?x∈[1,e],f(x)-m≤0成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案