精英家教网 > 高中数学 > 题目详情
3.在平面直角坐标系中,O为坐标原点,过点P(1,1)作直线l与圆x2+y2=9分别相交于A,B两点,则弦|AB|的最大值与最小值的积为12$\sqrt{7}$.

分析 点P(1,1)在圆x2+y2=9内,弦|AB|的最大值是直径,再求出|AB|的最小值,由此能求出弦|AB|的最大值与最小值的积.

解答 解:∵12+12<9,
∴点P(1,1)在圆x2+y2=9内,
∵过点P(1,1)作直线l与圆x2+y2=9分别相交于A,B两点,
∴弦|AB|的最大值|AB|max=2r=6,
|OP|=$\sqrt{1+1}=\sqrt{2}$,r=3,
弦|AB|的最小值|AB|min=2$\sqrt{{r}^{2}-|OP{|}^{2}}$=$\sqrt{9-2}$=2$\sqrt{7}$,
∴弦|AB|的最大值与最小值的积为:6×$2\sqrt{7}$=12$\sqrt{7}$.
故答案为:12$\sqrt{7}$.

点评 本题考查弦|AB|的最大值与最小值的积的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知圆C与直线$x+y-2\sqrt{2}=0$相切,圆心在x轴上,且直线y=x被圆C截得的弦长为$4\sqrt{2}$.
(1)求圆C的方程;
(2)过点M(-1,0)作斜率为k的直线l与圆C交于A,B两点,若直线OA与OB的斜率乘积为m,且$\frac{m}{k^2}=-3-\sqrt{2}$,求$\overrightarrow{OA}•\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如表中的数阵为“森德拉姆筛”,其特点是每行每列都成等差数列,记第i行第j列的数为aij,则数字109在表中出现的次数为12.
 2 3 4 5 6 7
 3 5 7 9 11 13
 4 7 10 13 16 19
 5 9 13 17 21 25
 6 11 16 21 26 31
 7 13 19 25 31 37

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线y2=4px上的点到直线x+y+3=0的最短距离为$\sqrt{2}$.
(Ⅰ)求抛物线的方程;
(Ⅱ)F为抛物线的焦点,直线l1,l2都过F点,且l1⊥l2,l1交抛物线于A,B两点,l2交抛物线于C,D两点,求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C的方程:x2+y2-4x-2y-m=0.
(1)若曲线C是圆,求m的取值范围;
(2)当m=0时,是否存在斜率为1的直线l,使l被圆C截得的弦AB,且以AB为直径的圆过点D(0,3),若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在等差数列{an}中,其前n项和为Sn,S2=9,S4=22,则S8=60.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=$\overrightarrow a$•($\overrightarrow b$+$\overrightarrow c$)-2,其中向量$\overrightarrow a$=(sinx,-cosx),$\overrightarrow b$=(sinx,-3cosx),$\overrightarrow c$=(-cosx,sinx),x∈R,
(1)求函数f(x)的最小正周期及最大值;
(2)将函数y=f(x)的图象通过怎样的变换得到y=cosx的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C:y2=2px(p>0),其焦点为F(1,0),过F作斜率为k的直线交抛物线C于A、B两点,交其准线于P点.
(Ⅰ)求P的值;
(Ⅱ)设|PA|+|PB|=λ|PA|•|PB|•|PF|,若k∈[$\frac{1}{4}$,1],求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若x,y满足约束条件$\left\{{\begin{array}{l}{x+y-5≤0}\\{2x-y-1≥0}\\{x-2y+1≤0}\end{array}}\right.$,则:
(Ⅰ)求z=2x+y的最大值;
(Ⅱ)求$\frac{y}{x}$的最大值.

查看答案和解析>>

同步练习册答案