精英家教网 > 高中数学 > 题目详情
14.如表中的数阵为“森德拉姆筛”,其特点是每行每列都成等差数列,记第i行第j列的数为aij,则数字109在表中出现的次数为12.
 2 3 4 5 6 7
 3 5 7 9 11 13
 4 7 10 13 16 19
 5 9 13 17 21 25
 6 11 16 21 26 31
 7 13 19 25 31 37

分析 第1行数组成的数列aij(j=1,2,…)是以2为首项,公差为1的等差数列,第j列数组成的数列aij(i=1,2,…)是以j+1为首项,公差为j的等差数列,求出通项公式,就求出结果.

解答 解:第i行第j列的数记为aij.那么每一组i与j的组合就是表中一个数.
因为第一行数组成的数列a1j(j=1,2,…)是以2为首项,公差为1的等差数列,
所以a1j=2+(j-1)×1=j+1,
所以第j列数组成的数列aij(i=1,2,…)是以j+1为首项,公差为j的等差数列,
所以aij=(j+1)+(i-1)×j=ij+1.
令aij=ij+1=109,
∴ij=108=1×108=2×54=3×36=4×27=6×18=12×9=9×12=18×6=27×4=36×3=54×2=108×1,
所以,表中109共出现12次.
故答案为:12

点评 本题考查了行列模型的等差数列应用,解题时利用首项和公差写出等差数列的通项公式,运用通项公式求值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知抛物线的顶点在原点,对称轴为y轴,其上一点A (m,-4)到焦点F的距离为6.求抛物线的方程及点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列命题:
①棱柱的侧棱都相等,侧面都是全等的平行四边形;
②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;
③存在每个面都是直角三角形的四面体;
④棱台的各条侧棱延长后交于同一点.
其中正确命题的序号是(  )
A.③④B.①③C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.抛物线y2=2px(p>0)的焦点F为圆C:x2+y2-4x+3=0的圆心
(1)求抛物线的准线方程;
(2)直线l与圆C相切,交抛物线A、B两点,求$\overrightarrow{FA}•\overrightarrow{FB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线y2=2px上一点M(1,a)到焦点的距离为3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px(p>0)上的点(6,y0)到其准线的距离为$\frac{15}{2}$.
(I)证明:抛物线C与直线x-y+8=0无公共点;
(Ⅱ)若A(a,0)(a≠0)过点A的直线l与抛物线交于M,N两点,探究:是否存在定值a,使得$\frac{1}{|AM|}$$+\frac{1}{|AN|}$的值不随直线l的变化而变化.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,且与y轴相切.过原点作倾斜角为$\frac{π}{3}$的直线n,交l于点A,交圆M于另一点B,且AO=OB=2.
(1)求圆M和抛物线C的方程.
(2)若点P(x,y)(x>0)为抛物线C上的动点,求$\frac{\overrightarrow{PM}•\overrightarrow{PF}}{\overrightarrow{OP}•\overrightarrow{OF}}$的最小值;
(3)过l上的动点Q向圆M作切线,切点为S、T,求证:直线ST恒过一个定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系中,O为坐标原点,过点P(1,1)作直线l与圆x2+y2=9分别相交于A,B两点,则弦|AB|的最大值与最小值的积为12$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高三(1)班全体女生的人数;
(2)求分数在[80,90)之间的女生人数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)结合茎叶图和频率分布直方图,估计全班女生的数学平均分.

查看答案和解析>>

同步练习册答案