精英家教网 > 高中数学 > 题目详情
12.已知抛物线C:y2=2px(p>0),其焦点为F(1,0),过F作斜率为k的直线交抛物线C于A、B两点,交其准线于P点.
(Ⅰ)求P的值;
(Ⅱ)设|PA|+|PB|=λ|PA|•|PB|•|PF|,若k∈[$\frac{1}{4}$,1],求实数λ的取值范围.

分析 (Ⅰ)运用抛物线的焦点坐标,计算即可得到所求方程;
(Ⅱ)由题可知:直线AB的方程为y=k(x-1)(k≠0),准线l的方程为x=-1,设A(x1,y1),B(x2,y2),联立抛物线的方程,运用韦达定理和弦长公式,化简整理,运用不等式的性质,即可得到所求范围.

解答 解:(Ⅰ)因为焦点F(1,0),所以$\frac{p}{2}=1$,解得p=2.    …(4分)
(Ⅱ)由题可知:直线AB的方程为y=k(x-1)(k≠0),准线的方程为x=-1…(6分)
设A(x1,y1),B(x2,y2),则$|{PA}|=\sqrt{1+{k^2}}({{x_1}+1}),|{PB}|=\sqrt{1+{k^2}}({{x_2}+1}),|{PF}|=2\sqrt{1+{k^2}}$.…(8分)
由$\left\{\begin{array}{l}y=k({x-1})\\{y^2}=4x\end{array}\right.$消去y得k2x2-(2k2+4)x+k2=0,
故${x_1}+{x_2}=\frac{{2{k^2}+4}}{k^2},{x_1}{x_2}=1$.                          …(10分)
由|PA|+|PB|=λ|PA|•|PB|•|PF|得$({{x_1}+1})+({{x_2}+1})=2λ({1+{k^2}})•({{x_1}+1})•({{x_2}+1})$
解得$λ=\frac{1}{{2({1+{k^2}})}}$.(13分),
因为k∈[$\frac{1}{4}$,1],所以λ∈[$\frac{1}{4}$,$\frac{8}{17}$].     …(15分)

点评 本题考查抛物线的定义、方程和性质,考查直线和抛物线的方程联立,运用韦达定理,注意运用弦长公式和抛物线的定义,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.抛物线y2=2px(p>0)的焦点F为圆C:x2+y2-4x+3=0的圆心
(1)求抛物线的准线方程;
(2)直线l与圆C相切,交抛物线A、B两点,求$\overrightarrow{FA}•\overrightarrow{FB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系中,O为坐标原点,过点P(1,1)作直线l与圆x2+y2=9分别相交于A,B两点,则弦|AB|的最大值与最小值的积为12$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,点D是AB的中点.求证:
(1)AC1∥平面B1CD;
(2)AC⊥BC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.输入x=5,运行下面的程序之后得到y等于(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集)
①若“a,b∈R,则a-b>0⇒a>b”类比推出“a,b∈C,则a-b>0⇒a>b”;
②“若a,b∈R,则a•b∈R”类比推出“若a,b∈C,则a•b∈C″;
③由向量$\overrightarrow a$的性质|$\overrightarrow a$|2=${\overrightarrow a^2}$,可以类比得到复数z的性质:|z|2=z2
④“若a,b,c,d∈R,则a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b$\sqrt{2}$=c+d$\sqrt{2}$⇒a=c,b=d”;
其中类比结论正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高三(1)班全体女生的人数;
(2)求分数在[80,90)之间的女生人数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)结合茎叶图和频率分布直方图,估计全班女生的数学平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线3x+4y=b与圆x2+y2-2x-2y-2=0相切,则b=(  )
A.3或17B.3或-17C.-3或-17D.-3或17

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知{bn}为等差数列,b5=2,则b1+b2+b3+…+b9=2×9,若{an}为等比数列,a5=2,则{an}的类似结论为${a_1}{a_2}{a_3}…{a_9}={2^9}$:.

查看答案和解析>>

同步练习册答案