精英家教网 > 高中数学 > 题目详情

如图,在三棱锥P-ABC中,PA⊥平面ABC、△ABC为正三角形,且PA=AB=2,则三棱锥P-ABC的侧视图面积为________.


分析:由题意确定三棱锥侧视图的形状,结合三视图的作法和已知的数据关系,即可求出侧视图的面积.
解答:解:由题意在三棱锥P-ABC中,PA⊥平面ABC、△ABC为正三角形,且PA=AB=2,
所以三棱锥的侧视图是直角三角形,如图,三角形的高为:PA=2,
C到AB的距离即底面三角形ABC的边AB上的高,就是侧视图直角三角形的底边:
所以侧视图的面积为:=
故答案为:
点评:本题考查三视图的作法,侧视图的面积的求法,正确得到三视图是解题的关键,注意侧视图中线段AB的射影是一个点,C到AB的距离不是AC的长,而是C到AB的距离.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案