精英家教网 > 高中数学 > 题目详情
已知锐角中的内角的对边分别为,定义向量,且.
(1)求的单调减区间;
(2)如果,求的面积的最大值.
(1);(2)

试题分析:(1)利用向量垂直,向的数量积为0得到,根据锐角三角形的内角求角,再由正弦函数得单调减区间为求解;(2)由余弦定理及三角形的面积公式求解.
试题解析:∵

,∴,又,∴,(4分)
(1),由得:
函数的单调减区间为.   (8分)
(2)由余弦定理知,
.     (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求的最小正周期;
(Ⅱ)当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中,角所对的边分别为,已知
(Ⅰ)求的大小;
(Ⅱ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求函数的定义域;
(Ⅱ) 求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的值域为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(I)求函数上的最大值与最小值;
(II)若实数使得对任意恒成立,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

的三边为,满足
(1)求的值;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知扇形面积为,半径是1,则扇形的圆心角是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,在同一周期内,
时,取得最大值;当时,取得最小值.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,函数有两个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案