科目:高中数学 来源: 题型:
如图,在三棱柱ABC
A1B1C1中,四边形AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1) 求证:AA1⊥平面ABC;
(2) 求二面角A1
BC1
B1的平面角的余弦值;
(3) 求证:在线段BC1存在点D,使得AD⊥A1B;并求
的值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知双曲线
-
=1(a>0,b>0)的两个焦点为F1
,F2![]()
,0
,点P是第一象限内双曲线上的点,且tan∠PF1F2=
,tan∠PF2F1=-2,则双曲线的离心率为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
本公司计划在甲、乙两个电视台做总时间不超过300min的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问:该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大?最大收益是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
在△ABC中,角A,B,C所对的边长分别为a,b,c,设向量x=(sinB,sinC),y=(cosB,cosC),z=(cosB,-cosC),若z∥(x+y),则tanB+tanC= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com