精英家教网 > 高中数学 > 题目详情

【题目】三棱锥P﹣ABC的四个顶点都在球O的球面上,已知PA,PB,PC两两垂直,PA=1,PB+PC=4,当三棱锥的体积最大时,球心O到平面ABC的距离是(
A.
B.
C.
D.

【答案】B
【解析】解:由题意,V= = , 当且仅当PB=PC=2时,三棱锥的体积最大,
如图所示,将P﹣ABC视为正四棱柱的一部分,

则CD=2R,即PA2+PB2+PC2=4R2=9,可得R=
因为AB=AC= ,BC=2
所以cos∠ACB= = ,sin∠ACB=
△ABC外接圆的半径为r=
设球心到平面ABC的距离为d,
所以d= =
故选B.
【考点精析】通过灵活运用球内接多面体,掌握球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+ )=2
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图程序框图的算法思路源于欧几里得名著《几何原本》中的“辗转相除法”,执行该程序框图,若输入m,n分别为225、135,则输出的m=(
A.5
B.9
C.45
D.90

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣m|﹣2|x﹣1|(m∈R)
(1)当m=3时,求函数f(x)的最大值;
(2)解关于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右焦点F( ),过点F作平行于y轴的直线截椭圆C所得的弦长为 . (Ⅰ)求椭圆的标准方程;
(Ⅱ)过点(1,0)的直线l交椭圆C于P,Q两点,N点在直线x=﹣1上,若△NPQ是等边三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,Q为AD的中点,M是棱PC的中点,PA=PD=PC,BC= AD=2,CD=4
(1)求证:直线PA∥平面QMB;
(2)若二面角P﹣AD﹣C为60°,求直线PB与平面QMB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为(
A.
B.3
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinx+λcosx的图像的一个对称中心是点( ,0),则函数g(x)=λsinxcosx+sin2x的图像的一条对称轴是直线(
A.x=
B.x=
C.x=
D.x=﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:
(Ⅰ)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数;
(Ⅱ)若从学习时间不少于4小时的学生中选取4人,设选到的男生人数为X,求随机变量X的分布列;
(Ⅲ)试比较男生学习时间的方差 与女生学习时间方差 的大小.(只需写出结论)

查看答案和解析>>

同步练习册答案