【题目】已知某单位全体员工年龄频率分布表,经统计,该单位35岁以下的青年职工中,男职工和女职工人数相等,且男职工的年龄频率分布直方图和如下:
年龄(岁) | [25,30) | [30,35) | [35,40) | [40,45) | [45,50) | [50,55) | 合计 |
人数(人) | 6 | 18 | 50 | 31 | 19 | 16 | 140 |
(Ⅰ)求;
(Ⅱ)求该单位男女职工的比例;
(Ⅲ)若从年龄在[25,30)岁的职工中随机抽取两人参加某项活动,求恰好抽取一名男职工和一名女职工的概率.
【答案】Ⅰ) (Ⅱ) 4∶3 (Ⅲ)
【解析】
(Ⅰ)利用频率和为1可得结果;(Ⅱ)由(Ⅰ)中求出的a及频率分布直方图可以求出35岁以下男职工的数量,进而得到所有男职工的数量,即可求男女职工比例;(Ⅲ)求出该组男女职工的数量,然后代入古典概型计算可得.
(Ⅰ)由男职工的年龄频率分布直方图可得:
.
所以.
(Ⅱ)该单位[25,35)岁职工共24人,由于[25,35)岁男女职工人数相等,所以[25, 35)岁的男职工共12人.由(1)知,男职工年龄在[25,35)岁的频率为,
所以男职工共有人,
所以女职工有人,
所以男女比例为4∶3.
(Ⅲ)由男职工的年龄频率分布直方图可得:男职工年龄在[25,30)岁的频率为.
由(2)知,男职工共有80人,所以男职工年龄在[25, 30)岁的有4人,分别记为.
又全体员工年龄在[25,30)岁的有6人,所以女职工年龄在[25, 30)岁的有2人,分别记为.
从年龄在25~30岁的职工中随机抽取两人的结果共有 种情况,
其中一男一女的有
8种情况,
所以恰好抽取一名男职工和一名女职工的概率为.
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的是( )
A.“”是“”充分的条件;
B.“”是“”成立的充分不必要条件;
C.命题“已知,是实数,若,则或”为真命题;
D.命题“若,都是正数,则也是正数”的逆否命题是“若不是正数,则,都不是正数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为等比数列, 公比为 为数列{an}的前n项和.
(1)若求;
(2)若调换的顺序后能构成一个等差数列,求的所有可能值;
(3)是否存在正常数,使得对任意正整数n,不等式总成立?若存在,求出的范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线x2=4y的焦点F和点A(-1,8),点P为抛物线上一点,则|PA|+|PF|的最小值为( )
A. 16 B. 6 C. 12 D. 9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点P为直线l:上且不在x轴上的任意一点,直线和与椭圆的交点分别为A、B和C、D、O为坐标原点.
(1)求的周长;
(2)设直线的斜线分别为,证明:;
(3)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率满足?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2018年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产x(百辆),需另投入成本万元,且.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.
(1)求出2018年的利润L(x)(万元)关于年产量x(百辆)的函数关系式;(利润=销售额-成本)
(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合,函数定义于并取值于.(用数字作答)
(1)若对于任意的成立,则这样的函数有_______个;
(2)若至少存在一个,使,则这样的函数有____个.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂有两个车间生产同一种产品,第一车间有工人200人,第二车间有工人400人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,并对他们中每位工人生产完成一件产品的时间(单位:min)分别进行统计,得到下列统计图表(按照[55,65),[65,75),[75,85),[85,95]分组).
分组 | 频数 |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合计 | 20 |
第一车间样本频数分布表
(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;
(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)
(Ⅲ)从第一车间被统计的生产时间小于75min的工人中,随机抽取3人,记抽取的生产时间小于65min的工人人数为随机变量X,求X的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com