精英家教网 > 高中数学 > 题目详情
如图,在直角坐标系xoy中,AB是半圆O:x2+y2=1(y≥0)的直径,点C是半圆O上任一点,延长AC到点P,使CP=CB,当点C从点B运动到点A时,动点P的轨迹的长度是(  )
A、2π
B、
2
π
C、π
D、4
2
π
考点:轨迹方程
专题:计算题,直线与圆
分析:根据题意,△BCP是以C为直角顶点的等腰直角三角形,可得直线PA到PB的角为45°.由此P(x,y),利用直线的斜率公式建立关于x、y的关系式,化简得到x2+(y-1)2=2,进而利用圆的周长公式算出点P的轨迹的长度.
解答: 解:连结BP,根据题意可得△BCP是以C为直角顶点的等腰直角三角形.
∴∠APB=45°,即直线PA到PB的角为45°,
设P(x,y),可得kPA=
y
x+1
,kPB=
y
x-1

∴tan45°=
y
x-1
-
y
x+1
1+
y
x-1
y
x+1
=1,
化简得x2+(y-1)2=2.
∴点P的轨迹方程为x2+(y-1)2=2,
由已知y≥0可得kPA=
y
x+1
>0,
可知P点的轨迹是以(0,1)为圆心、半径r=
2
的半圆,
可得轨迹的长度是
1
2
×2πr=
2
π

故选:B
点评:本题给出动点满足的条件,求动点的轨迹形成图形的长度.着重考查了圆的性质、直线的斜率公式和动点的轨迹及其应用等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,直角△POB中,∠PBO=90°,以O为圆心、OB为半径作圆弧交OP于A点.若圆弧
AB
等分△POB的面积,且∠AOB=α弧度,则
α
tanα
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰梯形ABCD中,AD∥BC,AB=BC=CD=
1
2
AD=2
,O为AD上一点,且 AO=1,平面外两点P,E满足PO=
3
2
,AE=1,EA⊥平面ABCD,PO∥EA.
(1)证明:BE∥平面PCD.
(2)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,过椭圆
x=5cosφ
y=sinφ
(φ为参数)的右焦点,斜率为
1
2
的直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积的和的
1
4
,且样本容量为200,则中间一组有频数为(  )
A、40B、32
C、0.2D、0.25

查看答案和解析>>

科目:高中数学 来源: 题型:

cos(-
3
)
的值等于(  )
A、-
1
2
B、
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的左右焦点F1,F2的坐标为(-4,0)与(4,0),离心率e=2.
(1)求双曲线的方程;
(2)已知椭圆
x2
36
+
y2
20
=1
,点P是双曲线与椭圆两曲线在第一象限的交点,求|PF1|•|PF2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在面积为1的正方形ABCD内部随机取一点P,则△PAB的面积大于等于
1
4
的概率是(  )
A、
1
5
B、
1
2
C、
1
3
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

某名学生在连续五次考试中数学成绩与物理成绩如下:
数学(x) 70 75 80 85 90
物理(y) 60 65 70 75 80
(Ⅰ)用茎叶图表示数学成绩与物理成绩;
(Ⅱ)数学成绩为x,物理成绩为y,求变量x与y之间的回归直线方程.
(注:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

同步练习册答案