精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点为F1,F2,其中一条渐近线方程为y=
b
2
x(b∈N*)
,P为双曲线上一点,且满足|OP|<5(其中O为坐标原点),若|PF1|、|F1F2|、|PF2|成等比数列,则双曲线C的方程为
 
考点:双曲线的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:由已知条件推导出|PF1|2+|PF2|2-8c2=16,由余弦定理得|PF2|2+|PF1|2=2c2+2|OP|2,由此求出b2=1,由一条渐近线方程为y=
b
2
x,求得a=2,由此能求出双曲线方程.
解答: 解:∵|F1F2|2=|PF1|•|PF2|,
∴4c2=|PF1|•|PF2|,
∵|PF1|-|PF2|=4,
∴|PF1|2+|PF2|2-2|PF1|•|PF2|=16,
即:|PF1|2+|PF2|2-8c2=16,①
设:∠POF1=θ,则:∠POF2=π-θ,
由余弦定理得:|PF2|2=c2+|OP|2-2|OF2|•|OP|•cos(π-θ),
|PF1|2=c2+|OP|2-2|OF1||OP|•cosθ
整理得:|PF2|2+|PF1|2=2c2+2|OP|2
由①②化简得:|OP|2=8+3c2=20+3b2
∵OP<5,∴20+3b2<25,∵b∈N,∴b2=1.
∵一条渐近线方程为y=
b
2
x(b∈N*),
b
a
=
1
2
,∴a=2,
x2
4
-y2=1

故答案为:
x2
4
-y2=1
点评:本题考查双曲线方程的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若无穷等比数列{an}满足:
lim
n→∞
(a1+a2+…+an)=4
,则首项a1的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=
an+3
2an-4
,求通项an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a,b,c满足a>b>c,a+b+c=0(a,b,c∈R).
(1)求证:两函数图象交于不同的两点A、B.
(2)求证:方程f(x)-g(x)=0的两根均小于2.
(3)求线段AB在x轴上的射影A1B1的长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,则(
3
2
i-
1
2
)(-
1
2
+
3
2
i)
=(  )
A、1
B、-
1
2
+
3
2
i
C、
1
2
-
3
2
i
D、-
1
2
-
3
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是抛物线y2=4x上异于顶点O的两个点,直线OA与直线OB的斜率之积为定值-4,△AOF,△BOF的面积为S1,S2,则S12+S22的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],f(3x-5)的定义域为(  )
A、[
4
3
10
3
]
B、[-8,10]
C、[
4
3
,+∞]
D、[8,10]

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简
tan(π-α)cos(2π-α)sin(-α+
2
)
cos(-α-π)sin(-π-α)


(2)证明:
1+2sinθcosθ
cos2θ-sin2θ
=
1+tanθ
1-tanθ

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的曲线方程:
(1)焦点在x轴上,c=
6
且经过点(-5,2)的双曲线的标准方程;
(2)焦点在直线x-2y-4=0上的抛物线的标准方程.

查看答案和解析>>

同步练习册答案