精英家教网 > 高中数学 > 题目详情

【题目】已知Sn为数列{an}的前n项和,a1=1,2Sn=(n+1)an , 若关于正整数n的不等式an2﹣tan≤2t2的解集中的整数解有两个,则正实数T的取值范围为

【答案】[1,
【解析】解:∵a1=1,2Sn=(n+1)an
∴n≥2时,2Sn1=nan1
∴2an=2(Sn﹣Sn1)=(n+1)an﹣nan1 , 整理得: =
= ═…= = =1,
∴an=n.
不等式an2﹣tan≤2t2 , 化为:(n﹣2t)(n+t)≤0,t>0,
∴0<n≤2t,
关于正整数n的不等式an2﹣tan≤2t2的解集中的整数解有两个,
可知n=1,2.
∴1≤t<
所以答案是:[1, ).
【考点精析】利用数列的前n项和对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=+ax,aR,

(1)讨论函数f(x)的单调区间;

(2)求证:≥x;

(3)求证:当a≥-2时,x[1,+ ∞),f(x)+lnx≥a+1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求证:OE∥平面PDC;
(Ⅲ)求面PAD与面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 “存在”,命题“曲线表示焦点在轴上的椭圆”,命题 曲线表示双曲线”

1若“”是真命题,求实数的取值范围;

2的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在实数a,使得不等式f(x)≥1﹣a+2|2+x|成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设公差不为零的等差数列{an}的前5项的和为55,且a2 ﹣9成等比数列.
(1)求数列{an}的通项公式.
(2)设数列bn= ,求证:数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一块半径为40m的半圆形绿化区域(以O为圆心,AB为直径),现对其进行改建,在AB的延长线上取点D,OD=80m,在半圆上选定一点C,改建后绿化区域由扇形区域AOC和三角形区域COD组成,其面积为Scm2 . 设∠AOC=xrad.

(1)写出S关于x的函数关系式S(x),并指出x的取值范围;
(2)试问∠AOC多大时,改建后的绿化区域面积S取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某城市气象部门的数据中,随机抽取100天的空气质量指数的监测数据如表:

空气质量指数t

(0,50]

(50,100]

(100,150]

(150,200)

(200,300]

(300,+∞)

质量等级

轻微污染

轻度污染

中度污染

严重污染

天数K

5

23

22

25

15

10

(1)若该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量取整数)存在如下关系 且当t>300时,y>500,估计在某一医院收治此类病症人数超过200人的概率;

(2)若在(1)中,当t>300时,yt的关系拟合的曲线为,现已取出了10对样本数据(tiyi)(i=12310),且知 试用可线性化的回归方法,求拟合曲线的表达式.(附:线性回归方程中, .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作,它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图,执行该程序框图,求得该垛果子的总数为( )

A. 120 B. 84 C. 56 D. 28

查看答案和解析>>

同步练习册答案