精英家教网 > 高中数学 > 题目详情
已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.
 
(1)求椭圆的标准方程;
(2)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.
(1);(2).

试题分析:(1)设椭圆的标准方程为,由已知得,解出即可求得a,b;
(2)由直线l:y=kx+t与圆(x+1)2+y2=1相切,可得k,t的关系式①,把y=kx+t代入
消掉y得x的二次方程,设M(x1,y1),N(x2,y2),由
得λ=(x1+x2,y1+y2),代入韦达定理可求得C点坐标,把点C代入椭圆方程可用k,t表示出λ,再由①式消掉k得关于t的函数,由t2范围可求得λ2的范围,进而求得λ的范围;.
试题解析:(1)设椭圆的标准方程为
由已知得:解得,所以椭圆的标准方程为:
(2)因为直线:与圆相切所以,
代入并整理得:┈7分
,则有

因为,,所以,
又因为点在椭圆上,所以,
因为所以
所以,所以的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆以双曲线的实轴为短轴、虚轴为长轴,且与抛物线交于两点.
(1)求椭圆的方程及线段的长;
(2)在图像的公共区域内,是否存在一点,使得的弦的弦相互垂直平分于点?若存在,求点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

分别为椭圆:的左右顶点,为右焦点,在点处的切线,上异于的一点,直线,中点,有如下结论:①平分;②与椭圆相切;③平分;④使得的点不存在.其中正确结论的序号是_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果表示焦点在轴上的椭圆,那么实数的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的焦点垂直于轴的弦长为,则双曲线的离心率的值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点为椭圆的左焦点,点为椭圆上任意一点,点的坐标为,则取最大值时,点的坐标为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆上两点,点关于轴的对称点为(异于点),若直线分别交轴于点,则(     )
A.0B.1C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的一个焦点作垂直于实轴的弦是另一焦点,若∠,则椭圆的离心率等于(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案