精英家教网 > 高中数学 > 题目详情
已知点为椭圆的左焦点,点为椭圆上任意一点,点的坐标为,则取最大值时,点的坐标为           

试题分析:椭圆的左焦点为,右焦点为,根据椭圆的定义,,∴
,由三角形的性质,知,当延长线与椭圆的交点时,等号成立,故所求最大值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的左、右焦点分别为,其上顶点为已知是边长为的正三角形.

(1)求椭圆的方程;
(2)过点任作一动直线交椭圆两点,记.若在线段上取一点,使得,当直线运动时,点在某一定直线上运动,求出该定直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.
 
(1)求椭圆的标准方程;
(2)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的方程为,其中.
(1)求椭圆形状最圆时的方程;
(2)若椭圆最圆时任意两条互相垂直的切线相交于点,证明:点在一个定圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦距为,过右焦点和短轴一个端点的直线的斜率为为坐标原点.
(1)求椭圆的方程.
(2)设斜率为的直线相交于两点,记面积的最大值为,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的由顶点为A,右焦点为F,直线与x轴交于点B且与直线交于点C,点O为坐标原点,,过点F的直线与椭圆交于不同的两点M,N.

(1)求椭圆的方程;
(2)求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆,上除顶点外的一点,是椭圆的左焦点,若 则点到该椭圆左焦点的距离为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的焦点分别为,弦过点,则的周长为
A.B.C.8D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线D的顶点是椭圆C:=1的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线D的方程;
(2)过椭圆C右顶点A的直线l交抛物线D于M、N两点.
①若直线l的斜率为1,求MN的长;
②是否存在垂直于x轴的直线m被以MA为直径的圆E所截得的弦长为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案