精英家教网 > 高中数学 > 题目详情
已知椭圆的由顶点为A,右焦点为F,直线与x轴交于点B且与直线交于点C,点O为坐标原点,,过点F的直线与椭圆交于不同的两点M,N.

(1)求椭圆的方程;
(2)求的面积的最大值.
(1);(2)

试题分析:(1)由直线与x轴交于点B且与直线交于点C, .即可得到关于的两个方程.从而得到结论.
(2)首先考虑直线MN垂直于x轴的情况,求出的面积.由(1)得到的方程联立直线方程,消去y得到一个关于x的方程,由韦达定理写出两个等式.由弦长公式即点到直线的距离公式,即可求出的面积的.再利用最值的求法,即可的结论.
试题解析:(1) 因为 , ,则,得
椭圆方程为:
(2) ①当直线与x轴不垂直时,设直线
消去
所以    
的距离,则
 所以

② 当轴时,,所以的面积的最大值为 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知焦点在轴上的椭圆经过点,直线
交椭圆于不同的两点.

(1)求该椭圆的标准方程;
(2)求实数的取值范围;
(3)是否存在实数,使△是以为直角的直角三角形,若存在,求出的值,若不存,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆以双曲线的实轴为短轴、虚轴为长轴,且与抛物线交于两点.
(1)求椭圆的方程及线段的长;
(2)在图像的公共区域内,是否存在一点,使得的弦的弦相互垂直平分于点?若存在,求点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆=1(a>b>0)的离心率为,短轴的一个端点为M(0,1),直线l:y=kx-与椭圆相交于不同的两点A、B.
(1)若AB=,求k的值;
(2)求证:不论k取何值,以AB为直径的圆恒过点M.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

分别为椭圆:的左右顶点,为右焦点,在点处的切线,上异于的一点,直线,中点,有如下结论:①平分;②与椭圆相切;③平分;④使得的点不存在.其中正确结论的序号是_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点为椭圆的左焦点,点为椭圆上任意一点,点的坐标为,则取最大值时,点的坐标为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点P为共焦点的椭圆和双曲线的一个交点,分别是它们的左右焦点.设椭圆离心率为,双曲线离心率为,若,则(    )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若=2·,求椭圆的方程.

查看答案和解析>>

同步练习册答案