精英家教网 > 高中数学 > 题目详情
13.圆(x-1)2+(y+3)2=2的圆心和半径分别为(  )
A.(1,-3),$\sqrt{2}$B.(-1,3),2C.(1,3),2D.(-1,3),$\sqrt{2}$

分析 由条件利用圆的标准方程的特征,得出结论.

解答 解:根据圆的标准方程可得,圆(x-1)2+(y+3)2=2的圆心和半径分别为(1,-3),$\sqrt{2}$,
故选:A.

点评 本题主要考查圆的标准方程的特征,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.过曲线S:y=3x-x3上一点A(2,-2)的切线方程为(  )
A.y=-2B.9x+y-16=0C.9x+y-16=0或y=-2D.9x-y-16=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.观察下列不等式1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…照此规律,第五个不等式为1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$+$\frac{1}{{5}^{2}}$+$\frac{1}{{6}^{2}}$<$\frac{11}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.方程x2+y2+ax+2ay+2a2+a-1=0表示的曲线是圆,则a的取值范围是(  )
A.RB.(-∞,-2)∪($\frac{2}{3}$,+∞)C.(-$\frac{2}{3}$,2)D.(-2,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=cos(ωx+$\frac{π}{6}$)(ω>0),且f(x)的两个相邻极大值点的距离为2.
(1)求f(x)的解析式;
(2)设g(x)=f(x)=f(x+$\frac{1}{3}$),求函数g(x)在区间[-$\frac{1}{2}$,$\frac{1}{3}$]的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.8名同学合影,站成了前排2人,后排6人的队形,现摄影师要从后排6人中抽2人调整到前排,若其他人相对顺序不变,则不同的调整方法的种数为180.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,已知四边形ABCD是矩形,M,N分别是AD,BC的中点,P是CD上一点,Q是AB上一点,PM与QN交于R,A是原点,B(2,0),C(2,1),D(0,1),P(t,1),Q(t,0),
(1)若$\overrightarrow{MP}⊥\overrightarrow{NP}$,求t的值
(2)求证:R,A,C三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用斜二测画法得到某三角形的水平放置的直观图是一个等腰直角三角形(如图所示,其中的x轴表示水平方向),斜边长为2,则原三角形的面积为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知实数a,b,c,满足0<a≤b≤c≤$\frac{1}{2}$,求证:$\frac{2}{c(1-c)}$≤$\frac{1}{a(1-b)}$+$\frac{1}{b(1-a)}$.

查看答案和解析>>

同步练习册答案