精英家教网 > 高中数学 > 题目详情
3.已知$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$\overrightarrow a$与$\overrightarrow b$的夹角为60°,则$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$上的投影为2.

分析 根据题意求出|$\overrightarrow{a}$+$\overrightarrow{b}$|的值,求出向量($\overrightarrow{a}$+$\overrightarrow{b}$)与$\overrightarrow{a}$的夹角为θ的余弦值,再利用数量积公式和向量投影的定义,即可求出向量$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影值.

解答 解:$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$\overrightarrow a$与$\overrightarrow b$的夹角为60°,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|×|$\overrightarrow{b}$|×cos60°=1×2×$\frac{1}{2}$=1;
由此可得($\overrightarrow{a}$+$\overrightarrow{b}$)2=|$\overrightarrow{a}$|2+2$\overrightarrow{a}$•$\overrightarrow{b}$+|$\overrightarrow{b}$|2=1+2+4=7,
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{7}$;
设$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为θ,
∵($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=|$\overrightarrow{a}$|2+$\overrightarrow{a}$•$\overrightarrow{b}$=1+1=2,
∴cosθ=$\frac{(\overrightarrow{a}+\overrightarrow{b})•\overrightarrow{a}}{|\overrightarrow{a}+\overrightarrow{b}|×|\overrightarrow{a}|}$=$\frac{2}{\sqrt{7}×1}$=$\frac{2\sqrt{7}}{7}$,
可得向量$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为:
|$\overrightarrow{a}$+$\overrightarrow{b}$|cosθ=$\sqrt{7}$×$\frac{2\sqrt{7}}{7}$=2.
故答案为:2.

点评 本题考查了平面向量数量积的定义、向量的夹角公式以及模长、投影的概念与计算问题,属于基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为(  )(参考数据:sin15°=0.2588,sin75°=0.1305)
A.3.10B.3.11C.3.12D.3.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=loga(x-3)-2过的定点是(4,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$,则f[f(4)]=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:
①f(x)在[m,n]上是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].
则称[m,n]是该函数的“等域区间”.
(1)求证:函数$g(x)=3-\frac{5}{x}$不存在“等域区间”;
(2)已知函数$h(x)=\frac{(2a+2)x-1}{{{a^2}x}}$(a∈R,a≠0)有“等域区间”[m,n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={(x,y)|x2+mx-y+2=0,x∈R},B={(x,y)|x-y+1=0,x∈R},若A∩B≠∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在平面直角坐标系中,已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-4,2),$\overrightarrow{c}$=(x,3),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$,则x=(  )
A.-2B.-4C.-3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列命题中:
①命题P:?x∈R使得2x2-1<0”,则¬P是假命题;
②“若x+y=0,则x,y互为相反数”的逆命题为假命题;
③?x∈R,若x>210,则x>2100”;
④命题“若p,则q”的逆否命题是“若¬q则¬p”,
其中真命题的序号是①④.

查看答案和解析>>

同步练习册答案