精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,过焦点且垂直于x轴的直线被椭圆截得的线段长为3

(1)求椭圆的方程;

(2)已知P为直角坐标平面内一定点,动直线l:与椭圆交于A、B两点,当直线PA与直线PB的斜率均存在时,若直线PA与PB的斜率之和为与t无关的常数,求出所有满足条件的定点P的坐标.

【答案】(1) .(2) .

【解析】

(1)由题意求得ac的值,结合隐含条件求得b,则椭圆方程可求;

(2)设,将代入椭圆方程,利用韦达定理及斜率公式化简可得,与t无关,由此能求出存在满足条件的m,n的值.

(1)设椭圆的半焦距为,则,且.

,解得.

依题意,,求得c=1,于是椭圆的方程为.

(2)设,将代入椭圆方程得.

则有.

直线的斜率之和

时斜率的和恒为0,

解得.

综上所述,所有满足条件的定点的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线Cx2=4y的焦点为F,过点P-22)的直线l与抛物线C交于AB两点.

1)当点PAB的中点时,求直线AB的方程;

2)求|AF||BF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1左右焦点为F1F2直线(1xy0与该椭圆有一个公共点在y轴上,另一个公共点的坐标为(m1).

1)求椭圆C的方程;

2)设P为椭圆C上任一点,过焦点F1F2的弦分别为PMPN,设λ1λ2,求λ12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(卷号)2040818101747712

(题号)2050752239689728

(题文)

在平面直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知直线的参数方程为为参数),曲线C的极坐标方程为.

(1)求曲线的直角坐标方程和直线的普通方程;

(2)设直线与曲线交于两点,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角梯形ABCD中,ABCD,∠BAD90°ABAD1CD2,若将△BCD沿着BD折起至△BC'D,使得ADBC'

1)求证:平面C'BD⊥平面ABD

2)求C'D与平面ABC'所成角的正弦值;

3MBD中点,求二面角MAC'B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当 取得极值的值

(Ⅱ)当函数有两个极值点总有 成立的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=2cosωx)(ω>0)满足:f)=f),且在区间()内有最大值但没有最小值,给出下列四个命题:P1在[0]上单调递减;P2的最小正周期是4πP3的图象关于直线x对称;P4的图象关于点(0)对称.其中的真命题是( )

A.P1P2B.P2P4C.P1P3D.P3P4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.

(Ⅰ)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;

(Ⅱ)在抽取的学生中,从成绩为[95,100]的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率;

(Ⅲ)记高一、高二两个年级知识竞赛的平均分分别为,试估计的大小关系.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an+1an}是首项为,公比为的等比数列,a11

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)求数列{3n1an}的前n项和Sn

查看答案和解析>>

同步练习册答案