【题目】已知椭圆
的离心率
,过焦点且垂直于x轴的直线被椭圆截得的线段长为3
(1)求椭圆的方程;
(2)已知P为直角坐标平面内一定点,动直线l:
与椭圆交于A、B两点,当直线PA与直线PB的斜率均存在时,若直线PA与PB的斜率之和为与t无关的常数,求出所有满足条件的定点P的坐标.
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=4y的焦点为F,过点P(-2,2)的直线l与抛物线C交于A,B两点.
(1)当点P为A、B的中点时,求直线AB的方程;
(2)求|AF||BF|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
1左右焦点为F1,F2直线(
1)x
y
0与该椭圆有一个公共点在y轴上,另一个公共点的坐标为(m,1).
(1)求椭圆C的方程;
(2)设P为椭圆C上任一点,过焦点F1,F2的弦分别为PM,PN,设
λ1
λ2
,求λ1+λ2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(卷号)2040818101747712
(题号)2050752239689728
(题文)
在平面直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知直线
的参数方程为
(
为参数),曲线C的极坐标方程为
.
(1)求曲线
的直角坐标方程和直线
的普通方程;
(2)设直线
与曲线
交于
两点,点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=1,CD=2,若将△BCD沿着BD折起至△BC'D,使得AD⊥BC'.
![]()
(1)求证:平面C'BD⊥平面ABD;
(2)求C'D与平面ABC'所成角的正弦值;
(3)M为BD中点,求二面角M﹣AC'﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
=2cos(ωx
)(ω>0)满足:f(
)=f(
),且在区间(
,
)内有最大值但没有最小值,给出下列四个命题:P1:
在[0,2π]上单调递减;P2:
的最小正周期是4π;P3:
的图象关于直线x
对称;P4:
的图象关于点(
,0)对称.其中的真命题是( )
A.P1,P2B.P2,P4C.P1,P3D.P3,P4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.
![]()
![]()
(Ⅰ)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;
(Ⅱ)在抽取的学生中,从成绩为[95,100]的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率;
(Ⅲ)记高一、高二两个年级知识竞赛的平均分分别为
,试估计
的大小关系.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an+1﹣an}是首项为
,公比为
的等比数列,a1=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{(3n﹣1)an}的前n项和Sn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com