【题目】已知椭圆
:
(
)的左、右焦点分别为
,过点
的直线
交
于
,
两点,
的周长为
,
的离心率![]()
(Ⅰ)求
的方程;
(Ⅱ)设点
,
,过点
作
轴的垂线
,试判断直线
与直线
的交点是否恒在一条定直线上?若是,求该定直线的方程;否则,说明理由.
科目:高中数学 来源: 题型:
【题目】某大学餐饮中心为了了解新生的饮食习惯,在某学院大一年级100名学生中进行了抽样调查,发现喜欢甜品的占70%.这100名学生中南方学生共80人.南方学生中有20人不喜欢甜品.
(1)完成下列
列联表:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | |||
北方学生 | |||
合计 |
(2)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(3)已知在被调查的南方学生中有6名数学系的学生,其中2名不喜欢甜品;有5名物理系的学生,其中1名不喜欢甜品.现从这两个系的学生中,各随机抽取2人,记抽出的4人中不喜欢甜品的人数为X,求X的分布列和数学期望.
附:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知与曲线
相切的直线
,与
轴,
轴交于
两点,
为原点,
,
,(
).
(1)求证::
与
相切的条件是:
.
(2)求线段
中点的轨迹方程;
(3)求三角形
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥
中,
平面ABCD,
,
,BC//AD,已知Q是四边形ABCD内部一点,且二面角
的平面角大小为
,若动点Q的轨迹将ABCD分成面积为
的两部分,则
=_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,求:
(1)过点
与原点距离为2的直线
的方程;
(2)过点
与原点距离最大的直线
的方程,最大距离是多少?
(3)是否存在过点
与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的左、右焦点分别为
、
,离心率为
,过焦点
且垂直于x轴的直线被椭圆C截得的线段长为1.
Ⅰ
求椭圆C的方程;
Ⅱ
点
为椭圆C上一动点,连接
,
,设
的角平分线PM交椭圆C的长轴于点
,求实数m的取值范围.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com