分析 (Ⅰ)取AE中点H,通过AD1=AE=D1E、AB=AE=BE,及线面垂直的判定定理与性质定理即得结论;
(Ⅱ)以H为坐标原点,以HA、HB分别为x、y轴建立空间直角坐标系,通过平面ABD1的法向量与平面ABC的一个法向量的夹角的余弦值为$\frac{\sqrt{5}}{5}$,即得结论.
解答 (Ⅰ)证明:取AE中点H,
∵AD1=AE=D1E,AB=AE=BE,
∴D1H⊥AE,BH⊥AE,
∴AE⊥平面HBD1,
∴AE⊥BD1;
(Ⅱ)
解:以H为坐标原点,以HA、HB分别为x、y轴建立空间直角坐标系如图,
则A(1,0,0),B(0,$\sqrt{3}$,0),D1(0,-$\sqrt{3}$cosθ,$\sqrt{3}$sinθ),
∴$\overrightarrow{AB}$=(-1,$\sqrt{3}$,0),$\overrightarrow{B{D}_{1}}$=(0,-$\sqrt{3}$-$\sqrt{3}$cosθ,$\sqrt{3}$sinθ),
设平面ABD1的法向量为$\overrightarrow{n}$=(x,y,z),
则$\overrightarrow{AB}•\overrightarrow{n}$=$-x+\sqrt{3}y=0$,
$\overrightarrow{B{D}_{1}}•\overrightarrow{n}$=(-$\sqrt{3}$-$\sqrt{3}$cosθ)y+($\sqrt{3}$sinθ)z=0,
∴$\overrightarrow{n}$=($\sqrt{3}$sinθ,sinθ,1+cosθ),
同理可得平面ABC的一个法向量$\overrightarrow{m}$=(0,0,1),
∵二面角D1-AB-C的平面角的余弦值为$\frac{\sqrt{5}}{5}$,
∴$\frac{1+cosθ}{\sqrt{3si{n}^{2}θ+si{n}^{2}θ+(1+cosθ)^{2}}}$=$\frac{\sqrt{5}}{5}$,
解得θ=$\frac{π}{2}$,CD1=$\sqrt{10}$.
点评 本题考查空间中线线垂直的判定,考查求二面角的大小,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com