精英家教网 > 高中数学 > 题目详情
5.若($\frac{3}{\sqrt{x}}$-$\root{3}{x}$)n的展开式中所有项系数的绝对值之和为1024,则该展开式中的常数项是-90.

分析 先求出n=5,再写出通项公式,令$\frac{5r-15}{6}$=0,解得r=3.即可求出答案.

解答 解:($\frac{3}{\sqrt{x}}$-$\root{3}{x}$)n的展开式中所有项系数的绝对值之和等于($\frac{3}{\sqrt{x}}$+$\root{3}{x}$)n为展开式中所有项系数的绝对值之和,
令x=1可得:4n=1024,解得n=5.
∴($\frac{3}{\sqrt{x}}$-$\root{3}{x}$)5的通项公式为:Tr+1=C5r(-1)r35-rx${\;}^{\frac{5r-15}{6}}$,
令$\frac{5r-15}{6}$=0,解得r=3.
∴该展开式中的常数项是C53(-1)332=-90.
故答案为:-90

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|(x+1)(x-2)≤0},B={x|(x-1)(x+2)≤0,则A∩B=(  )
A.{-1,0,1}B.{0,1}C.[0,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.由曲线y=x2,y=$\sqrt{x}$围成的封闭图形的面积为(  )
A.$\frac{1}{6}$B.1C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=\left\{\begin{array}{l}{2^x}-1,x≤1\\{log_2}(x-1),x>1\end{array}\right.$则$f(f(\frac{7}{3}))$=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{2}{x^2}$-2alnx+(a-2)x,a∈R.
(Ⅰ)当a=-1时,求函数f(x)的极值;
(Ⅱ)当a<0时,讨论函数f(x)单调性;
(Ⅲ)是否存在实数a,对任意的m,n∈(0,+∞),且m≠n,有$\frac{f(m)-f(n)}{m-n}$>a恒成立?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若实数x,y满足x2+y2-2x+4y=0,则|x-2y+6|的最大值为(  )
A.11B.12C.16D.17

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在△ABC中,内角A,B,C对应的边分别为a,b,c,且acosC+ccosA=2bcosB,$b=\sqrt{3}$
(1)求证:角A,B,C成等差数列;
(2)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.我国古代数学有非常高的成就,在很多方面都领先于欧洲数学.下面数学名词中蕴含微积分中“极限思想”的是(  )
A.天元术B.少广术C.衰分术D.割圆术

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若抛物线y2=2px的焦点与椭圆$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}$=1的右焦点重合,则p的值为(  )
A.2B.-2C.-4D.4

查看答案和解析>>

同步练习册答案