精英家教网 > 高中数学 > 题目详情
12.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,若椭圆C上的点A(1,$\frac{3}{2}$)到F1、F2两点的距离之和为4,求椭圆C的方程及其焦点坐标.

分析 利用椭圆的定义求出a,点的坐标代入椭圆方程,求出b,即可求椭圆C的方程和焦点坐标.

解答 解:由题设知:2a=4,即a=2,
将点(1,$\frac{3}{2}$)代入椭圆方程得$\frac{1}{4}+\frac{(\frac{3}{2})^{2}}{{b}^{2}}$=1,
解得b2=3
∴c2=a2-b2=4-3=1,
故椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,焦点F1、F2的坐标分别为(-1,0)和(1,0).

点评 本题考查椭圆的标准方程的求法,考查椭圆的性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.平面直角坐标系中,圆C1参数方程$\left\{\begin{array}{l}{x=2cosα}\\{y=1+2sinα}\end{array}\right.$(α为参数),椭圆C2的极坐标方程:${ρ}^{2}=\frac{2}{co{s}^{2}θ+2si{n}^{2}θ}$.
(1)求椭圆C2直角坐标方程,若A(x,y)是椭圆C2上任意一点,求x+$\sqrt{2}y$取值范围;
(2)若P是椭圆C2上任意一点,Q为圆C1上任意一点,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,∠C=90°,且CA=CB=3,点M满足$\overrightarrow{BM}=2\overrightarrow{AM}$,则$\overrightarrow{CM}•\overrightarrow{CA}$=18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若关于x的不等式x2+ax-c<0的解集为{x|-2<x<1},对任意的t∈[1,2],函数f(x)=ax3+(m+$\frac{1}{2}$)x2-cx在区间(t,3)上总不是单调函数,则m的取值范围是(  )
A.-$\frac{14}{3}$<m<-3B.-3<m<-1C.-$\frac{14}{3}$<m<-1D.-3<m<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,D为边AC上一点,AB=AC=6,AD=4,若△ABC的外心恰在线段BD上,则BC=3$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若函数f(x)=x2+2a|x-2|,数列{an}的前n项和为Sn,满足Sn=f(n).
(1)若数列{an}为递增数列,求实数a的取值范围;
(2)当a=$\frac{1}{2}$时,设数列{bn}满足:bn=2${\;}^{{a}_{n}}$,记{bn}的前n项和Tn,求满足不等式Tn>2015的最小整数n;
(3)当函数f(x)为偶函数时,对任意给定的k(k∈N*),是否存在自然数p,r(k<p<r)使$\frac{1}{{a}_{k}}$,$\frac{1}{{a}_{p}}$,$\frac{1}{{a}_{r}}$成等差数列?若不存在,说明理由;若存在,请找出p,r与k的一组关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,则|PQ|的最小值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别是F1、F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在平面直角坐标系中,若P(x,y)满足$\left\{\begin{array}{l}x-4y+4≤0\\ 2x+y-10≤0\\ 5x-2y+2≥0\end{array}\right.$,则x+2y的最大值是(  )
A.2B.8C.14D.16

查看答案和解析>>

同步练习册答案