精英家教网 > 高中数学 > 题目详情

【题目】已知:以点()为圆心的圆与轴交

于点O, A,与y轴交于点O, B,其中O为原点.

(1)求证:△OAB的面积为定值;

(2)设直线与圆C交于点M, N,若OM = ON,求圆C的方程.

【答案】1)根据条件写成圆的方程,求出点A,B的坐标,进而写出△OAB的面积即可得证;

2

【解析】试题分析:(1)设出圆C的方程,求得A、B的坐标,再根据S△AOB=OAOB,计算可得结论.

(2)设MN的中点为H,则CHMN,根据C、H、O三点共线,KMN=﹣2,由直线OC的斜率,求得t的值,可得所求的圆C的方程.

试题解析:

(1)

设圆的方程是

,得;令,得

,即:的面积为定值.

(2) 垂直平分线段

直线的方程是

,解得:

时,圆心的坐标为,此时到直线的距离,圆与直线相交于两点.

时,圆心的坐标为,此时到直线的距离与直线不相交,不符合题意舍去.

的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

时,求的单调区间;

时,的图象恒在的图象上方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

(1)讨论函数的单调性;

(2)当时,设的两个极值点恰为的零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某购物中心为了了解顾客使用新推出的某购物卡的顾客的年龄分布情况,随机调查了位到购物中心购物的顾客年龄,并整理后画出频率分布直方图如图所示,年龄落在区间内的频率之比为.

(1) 求顾客年龄值落在区间内的频率;

(2) 拟利用分层抽样从年龄在的顾客中选取人召开一个座谈会,现从这人中选出人,求这两人在不同年龄组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,

(1)设,证明:数列是等差数列;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数,其图象关于点对称,且在区间上是单调函数,则的值是( )

A. B. C. D. 无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位每天的用电量(度)与当天最高气温)之间具有线性相关关系,下表是该单位随机统计4天的用电量与当天最高气温的数据.

最高气温(℃)

26

29

31

34

用电量 ()

22

26

34

38

)根据表中数据,求出回归直线的方程(其中);

)试预测某天最高气温为33℃时,该单位当天的用电量(精确到1度).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 :关于的方程的两根之差的绝对值大于3.如果为真命题,为假命题,求实数的取值范围

查看答案和解析>>

同步练习册答案