精英家教网 > 高中数学 > 题目详情

【题目】已知函数上的偶函数,其图象关于点对称,且在区间上是单调函数,则的值是( )

A. B. C. D. 无法确定

【答案】C

【解析】由f(x)是偶函数,得f(﹣x)=f(x),即sin(﹣ωx+)=sin(ωx+),

所以﹣cosφsinωx=cosφsinωx,

对任意x都成立,且ω0,所以得cosφ=0.

依题设0<φ<π,所以解得φ=

由f(x)的图象关于点M对称,得f(﹣x)=﹣f(+x),

取x=0,得f()=sin(+)=cos

∴f()=sin(+)=cos,∴cos=0,

又ω0,得=+kπ,k=1,2,3,

∴ω=(2k+1),k=0,1,2,

当k=0时,ω=,f(x)=sin(x+)在[0,]上是减函数,满足题意;

当k=1时,ω=2,f(x)=sin(2x+)在[0,]上是减函数;

当k=2时,ω=,f(x)=(x+)在[0,]上不是单调函数;

所以,综合得ω=或2.

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面,四边形是直角梯形,其中. .

1)求异面直线所成角的大小;

2)若平面内有一经过点的曲线,该曲线上的任一动点都满足所成角的大小恰等于所成角.试判断曲线的形状并说明理由;

3)在平面内,设点是(2)题中的曲线在直角梯形内部(包括边界)的一段曲线上的动点,其中为曲线的交点.为圆心,为半径的圆分别与梯形的边交于两点.点在曲线段上运动时,试求圆半径的范围及的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市要建成宜商、宜居的国际化新城,该城市的东城区、西城区分别引进8个厂家,现对两个区域的16个厂家进行评估,综合得分情况如茎叶图所示.

(1)根据茎叶图判断哪个区域厂家的平均分较高;

(2)规定85分以上(含85分)为优秀厂家,若从该两个区域各选一个优秀厂家,求得分差距不超过5分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:以点()为圆心的圆与轴交

于点O, A,与y轴交于点O, B,其中O为原点.

(1)求证:△OAB的面积为定值;

(2)设直线与圆C交于点M, N,若OM = ON,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:,点.

(1)设是椭圆上任意的一点,是点关于坐标原点的对称点,记,求的取值范围;

(2)已知点是椭圆上在第一象限内的点,记为经过原点与点的直线,截直线所得的线段长,试将表示成直线的斜率的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形中,,沿将梯形折起,使得平面⊥平面.

(1)证明:

(2)求三棱锥的体积;

(3)求直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示中的最大值.已知函数

(1)设求函数上零点的个数

(2)试探讨是否存在实数使得恒成立若存在的取值范围若不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是正方形,侧棱PD底面ABCDPDDCEPC的中点,作EFPBPB于点F.

1)求证:PA平面EDB

2)求证:PB平面EFD

3)求二面角CPBD的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自点A(-33)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在直线的方程。

查看答案和解析>>

同步练习册答案